BZOJ 4128: Matrix (矩阵BSGS)
类比整数的做法就行了
1A爽哉
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAXN = 75;
const int sed = 137;
int n, p;
struct Matrix {
int v[MAXN][MAXN];
Matrix(){ memset(v, 0, sizeof v); }
inline void read() {
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j)
scanf("%d", &v[i][j]);
}
inline int hash() {
int re = 0;
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j)
re = re * sed + v[i][j];
return re;
}
inline Matrix operator *(const Matrix &o)const {
Matrix re;
for(int k = 1; k <= n; ++k)
for(int i = 1; i <= n; ++i) if(v[i][k])
for(int j = 1; j <= n; ++j) if(o.v[k][j])
re.v[i][j] = (re.v[i][j] + v[i][k] * o.v[k][j]) % p;
return re;
}
inline bool operator ==(const Matrix &o)const {
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j)
if(v[i][j] != o.v[i][j]) return 0;
return 1;
}
}Zero, One;
inline Matrix qpow(Matrix a, int b) {
Matrix re = One;
while(b) {
if(b & 1) re = re * a;
a = a * a; b >>= 1;
}
return re;
}
map<int, int>myhash;
inline int Baby_Step_Giant_Step(Matrix a, Matrix b) {
if(b == One) return 0;
myhash.clear();
int m = int(sqrt(p)+1);
Matrix base = b;
for(int i = 0; i < m; ++i) {
myhash[base.hash()] = i;
base = a * base; //这里写a*base 和 base*a 都是一样的,因为两边同时乘以矩阵,可以乘在左边也可以乘在右边
}
Matrix tmp = One;
base = qpow(a, m);
for(int i = 1, j; i <= m+1; ++i) {
tmp = tmp * base;
if(myhash.count(j=tmp.hash()))
return i*m - myhash[j];
}
return -1;
}
inline void Pre_Work() {
for(int i = 1; i <= n; One.v[i][i] = 1, ++i);
}
int main() {
scanf("%d%d", &n, &p);
Pre_Work();
Matrix A, B;
A.read(); B.read();
printf("%d\n", Baby_Step_Giant_Step(A, B));
}
BZOJ 4128: Matrix (矩阵BSGS)的更多相关文章
- BZOJ 4128: Matrix
BZOJ 4128: Matrix 标签(空格分隔): OI BZOJ 大步小步 矩阵 费马小定理 Time Limit: 10 Sec Memory Limit: 128 MB Descriptio ...
- bzoj 4128: Matrix ——BSGS&&矩阵快速幂&&哈希
题目 给定矩阵A, B和模数p,求最小的正整数x满足 A^x = B(mod p). 分析 与整数的离散对数类似,只不过普通乘法换乘了矩阵乘法. 由于矩阵的求逆麻烦,使用 $A^{km-t} = B( ...
- BZOJ 4128 Matrix BSGS+矩阵求逆
题意:链接 方法: BSGS+矩阵求逆 解析: 这题就是把Ax=B(mod C)的A和B换成了矩阵. 然而别的地方并没有修改. 所以就涉及到矩阵的逆元这个问题. 矩阵的逆元怎么求呢? 先在原矩阵后接一 ...
- BZOJ 4128 Matrix ——BSGS
矩阵的BSGS. 只需要哈希一下存起来就可以了. 也并不需要求逆. #include <map> #include <cmath> #include <cstdio> ...
- bzoj4128 Matrix 矩阵 BSGS
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4128 题解 想了十分钟没有任何思路. 然后一眼瞥见一句话"数据保证在 \(p\) 内 ...
- 【CSS3】 理解CSS3 transform中的Matrix(矩阵)
理解CSS3 transform中的Matrix(矩阵) by zhangxinxu from http://www.zhangxinxu.com 本文地址:http://www.zhangxinxu ...
- 理解CSS3 transform中的Matrix(矩阵)
一.哥,我被你吓住了 打架的时候会被块头大的吓住,学习的时候会被奇怪名字吓住(如“拉普拉斯不等式”).这与情感化设计本质一致:界面设计好会让人觉得这个软件好用! 所以,当看到上面“Matrix(矩阵) ...
- HDU5015 233 Matrix(矩阵高速幂)
HDU5015 233 Matrix(矩阵高速幂) 题目链接 题目大意: 给出n∗m矩阵,给出第一行a01, a02, a03 ...a0m (各自是233, 2333, 23333...), 再给定 ...
- 理解CSS3 transform中的Matrix(矩阵)——张鑫旭
by zhangxinxu from http://www.zhangxinxu.com本文地址:http://www.zhangxinxu.com/wordpress/?p=2427 一.哥,我被你 ...
随机推荐
- Intellj Idea 快捷键入门
Intellj IDEA快捷键入门 时间: 2019/11/29 系统: Win10系统 版本 :Intellj Idea 2018.3 背景: 入手Intellj idea 两个月了,总结一下一些常 ...
- Yii源码分享-底层+view层1
文件:https://files.cnblogs.com/files/cwlife/YII%E7%BB%A7%E6%89%BF%E6%A0%91.xmind.zip 视屏:https://v.qq.c ...
- Elasticsearch5.x安装及常见错误的解决方法
Elasticsearch是基于java开发的,机器上必须要先java环境,elasticsearch5.x建议用jdk8的最新版本.下面介绍elasticsearch5.x的安装步骤: 一.安装El ...
- LeetCode 206——链表反转(JAVA)
题目: 反转一个单链表. 示例: 输入: 1->2->3->4->5->NULL 输出: 5->4->3->2->1->NULL 进阶:你可 ...
- Linxu-mysql5.7源码安装
Mysql5.7 Linux安装教程 1系统约定安装文件下载目录:/data/softwareMysql目录安装位置:/usr/local/mysql数据库保存位置:/data/mysql日志保存位置 ...
- UI语言杂集
最适合做 GUI 的是 DSL 或者 XML(以及 XML 的扩展)之类的标记语言,而不是编程语言. 例如 Qt 的 QML,Android 的 XML 或者 WPF 的 XAML 以及大家都再熟悉不 ...
- JavaScript设计模式(装饰者模式)
一.模拟传统面向对象语言的装饰者模式: 假设我们在编写一个飞机大战的游戏,随着经验值的增加,我们操作的飞机对象可以升级成更厉害的飞机,一开始这些飞机只能发射普通的子弹,升到第二级时可以发射导弹,升到第 ...
- MVC进阶讲解+小技巧-乱七八糟
开发步骤 1.建立项目 2.建立文件夹 3.建立Controllers 4.生成页面 5.编写Html+Js 6.编写异步请求的Action的方法,返回部分页(用于分页) 7.Js中显示部分页 8.增 ...
- 编译原理-递归下降分析法 c程序部分的分析
实验三 语法分析程序实验 专业 商软2班 姓名 黄仲浩 学号 201506110166 一. 实验目的 编制一个部分文法分析程序. 二. 实验内容和要求 输入:源程序字符串 输出:正确 ...
- 将xml作为输入参数传递给存储过程
1 查看存储过程的方式 exec sp_helptext 'GetTrackingFeedLogByMaxId' select definition from sys.sql_modules wher ...