「CF319E」Ping-Pong「线段树」「并查集」
题意
规定区间\((a,b)\)到区间\((c,d)\)有边当且仅当\(c<a<d\)或\(c<b<d\)。
起初区间集合为空。有\(n\)(\(n\leq 10^5\))次操作,每次操作形如:
- \(1\) \(x\) \(y\)(\(|x|,|y|\leq10^9\)):加入一个新区间\((x,y)\),保证新区间长度最长
- \(2\) \(x\) \(y\):询问第\(i\)个加入第区间能否到达第\(j\)个加入第区间,保证询问合法
题解
考虑连边的两种情况:第一种是包含,小的向大的连边;第二种是相交不包含,连双向边。
注意到答案最后不会走超过\(1\)条单向边,我们先考虑双向边。
由于是双向边,我们可以用并查集维护连通块。那对于一个新区间,我们得考虑它和哪些区间连双向边。
可以使用线段树来做这件事。把区间拆放到\(\log\)个线段树结点上。加新区间连边就把左右端点对应线段树叶子结点到根到路径上所有放的路径都合并掉,然后把标记改成自己。题目给了一个每次加入一个最长区间的限制,这样就保证了新区间不会被包含。复杂度也是对的,每个区间分\(\log\)段,每段加入一次删除一次。
询问就判是同个并查集,或者是包含关系就YES,否则NO。注意一个连通块要维护L和R用于判包含。
时间复杂度\(O(n\alpha(n)\log n)\)
#include <algorithm>
#include <cstdio>
using namespace std;
const int N = 1e5 + 10;
struct node {
int op, l, r;
} a[N];
int q, n, b[N * 2], f[N], L[N], R[N];
inline bool bel(int u, int l, int r) {
return l < u && u < r;
}
int find(int u) {
return u == f[u] ? u : f[u] = find(f[u]);
}
vector<int> vec[N << 2];
void solve(int u, int l, int r, int p, int cur) {
if(vec[u].size()) {
for(int i = 0; i < (int) vec[u].size(); i ++) {
int v = vec[u][i]; v = find(v); f[v] = cur;
L[cur] = min(L[cur], L[v]); R[cur] = max(R[cur], R[v]);
}
vec[u].clear();
vec[u].push_back(cur);
}
if(l == r) return ;
int mid = (l + r) >> 1;
if(p <= mid) solve(u << 1, l, mid, p, cur);
else solve(u << 1 | 1, mid + 1, r, p, cur);
}
void pushe(int u, int l, int r, int ql, int qr, int cur) {
if(l == ql && r == qr) {
vec[u].push_back(cur);
return ;
}
int mid = (l + r) >> 1;
if(qr <= mid) pushe(u << 1, l, mid, ql, qr, cur);
else if(ql > mid) pushe(u << 1 | 1, mid + 1, r, ql, qr, cur);
else {
pushe(u << 1, l, mid, ql, mid, cur);
pushe(u << 1 | 1, mid + 1, r, mid + 1, qr, cur);
}
}
int main() {
scanf("%d", &q);
for(int i = 1; i <= q; i ++) {
scanf("%d%d%d", &a[i].op, &a[i].l, &a[i].r);
if(a[i].op == 1) {
b[++ n] = a[i].l; b[++ n] = a[i].r;
}
}
sort(b + 1, b + n + 1);
n = unique(b + 1, b + n + 1) - b - 1;
int c = 0;
for(int i = 1; i <= q; i ++) {
if(a[i].op == 1) {
a[i].l = lower_bound(b + 1, b + n + 1, a[i].l) - b;
a[i].r = lower_bound(b + 1, b + n + 1, a[i].r) - b;
c ++; f[c] = c; L[c] = a[i].l; R[c] = a[i].r;
solve(1, 1, n, a[i].l, c);
solve(1, 1, n, a[i].r, c);
if(a[i].l < a[i].r - 1) {
pushe(1, 1, n, a[i].l + 1, a[i].r - 1, c);
}
}
if(a[i].op == 2) {
int u = find(a[i].l), v = find(a[i].r);
bool tag = u == v || bel(L[u], L[v], R[v]) || bel(R[u], L[v], R[v]);
puts(tag ? "YES" : "NO");
}
}
return 0;
}
「CF319E」Ping-Pong「线段树」「并查集」的更多相关文章
- 【BZOJ4025】二分图(线段树分治,并查集)
[BZOJ4025]二分图(线段树分治,并查集) 题面 BZOJ 题解 是一个二分图,等价于不存在奇环. 那么直接线段树分治,用并查集维护到达根节点的距离,只计算就好了. #include<io ...
- 【CF938G】Shortest Path Queries(线段树分治,并查集,线性基)
[CF938G]Shortest Path Queries(线段树分治,并查集,线性基) 题面 CF 洛谷 题解 吼题啊. 对于每个边,我们用一个\(map\)维护它出现的时间, 发现询问单点,边的出 ...
- BZOJ 4025: 二分图 [线段树CDQ分治 并查集]
4025: 二分图 题意:加入边,删除边,查询当前图是否为二分图 本来想练lct,然后发现了线段树分治的做法,感觉好厉害. lct做法的核心就是维护删除时间的最大生成树 首先口胡一个分块做法,和hno ...
- bzoj2049 线段树 + 可撤销并查集
https://www.lydsy.com/JudgeOnline/problem.php?id=2049 线段树真神奇 题意:给出一波操作,拆边加边以及询问两点是否联通. 听说常规方法是在线LCT, ...
- BZOJ 2333 棘手的操作(离线+线段树+带权并查集)
这题搞了我一天啊...拍不出错原来是因为极限数据就RE了啊,竟然返回WA啊.我的线段树要开8倍才能过啊... 首先可以发现除了那个加边操作,其他的操作有点像线段树啊.如果我们把每次询问的联通块都放在一 ...
- BZOJ 2733 线段树的合并 并查集
思路: 1.线段树合并(nlogn的) 2.splay+启发式合并 线段树合并比较好写 我手懒 //By SiriusRen #include <cstdio> #include < ...
- Explorer(2019年牛客多校第八场E题+线段树+可撤销并查集)
题目链接 传送门 题意 给你一张无向图,每条边\(u_i,v_i\)的权值范围为\([L_i,R_i]\),要经过这条边的条件是你的容量要在\([L_i,R_i]\),现在问你你有多少种容量使得你可以 ...
- 2019牛客暑期多校训练营(第八场) E 线段树+可撤销并查集
题目传送门 题意: 给出m条无向边,每条边都有一个$[l,r]$,意思是体积在这个范围内的人才能通过这条边,询问有多少种体积的可能性,能使人从1到n 思路:由于是无向边,1和n的连通性可以用并查集维护 ...
- BZOJ 2733 [HNOI2012]永无乡 (权值线段树启发式合并+并查集)
题意: n<=1e5的图里,在线连边.查询某连通块第k大 思路: 练习线段树合并的好题,因为依然记得上一次启发式合并trie的时候内存爆炸的恐怖,所以这次还是用了动态开点.回收 听说启发式合并s ...
- 5.29 省选模拟赛 波波老师 SAM 线段树 单调队列 并查集
LINK:波波老师 LINK:同bzoj 1396 识别子串 不过前者要求线性做法 后者可以log过.实际上前者也被我一个log给水过了. 其实不算很水 我自认跑的很快罢了. 都是求经过一个位置的最短 ...
随机推荐
- AtomicIntegerFieldUpdater和AtomicInteger
为什么有了AtomicInteger还需要AtomicIntegerFieldUpdater? 当需要进行原子限定的属性所属的类会被创建大量的实例对象, 如果用AtomicInteger, 每个实例里 ...
- idea 控制台 彩色打印日志
IDEA右上角:Edit Configurations,点击,找到VM options,填入-Dspring.output.ansi.enabled=ALWAYS. 重新启动应用,就会发现控制台日志变 ...
- linux环境,hidraw设备自动加载时默认权限的设置方法
在linux系统中,hidraw设备会自动加载并设置默认权限,但系统的默认只允许root用户访问,普通用户是不允许读写. 设置的方法是修改udev的配置,配置路径是/etc/udev/rules.d/ ...
- 【转载】 C#使用Select方法快速获取List集合集合中某个属性的所有值集合
在C#的List集合操作或者数组操作中,有时候我们需要获取到List集合元素中所有的对象的某个属性,然后存放到一个数组集合中,此时就可以使用到List集合以及数组的扩展方法Select方法快速实现获取 ...
- java ajax上传文件
包括案例 1.springmvc上传 2.ajax上传 3.form表单与文件上传 - 1. http://localhost:8080/ 第一种:springmvc上传- 2. http://loc ...
- ChibiOS/RT移植到STM32F407
官网地址:http://www.chibios.org/dokuwiki/doku.php 下载源码 找到STM32F407的demos程序(chibios\demos\STM32\RT-STM32F ...
- SQLSEVER在存储过程或触发器中模糊查询拼接
declare @name nvarchar(50); declare @name_pin nvarchar(50); set @name_pin = '%'+@name +'%' 模糊查询: sel ...
- unittest 运行slenium(一)---创建配置类
文章主要是创建: log : 日志文件 excel :文档的读写 ini 及 yaml :文件的读取 一:创建log日志文件 主要是对logging框架进行二次封装并输出自己需要的日志格式 1. 首先 ...
- git使用——远程仓库(Remote repositories)
前言 为了能在任意 Git 项目上协作,你需要知道如何管理自己的远程仓库. 远程仓库是指托管在因特网或其他网络中的你的项目的版本库. 你可以有好几个远程仓库,通常有些仓库对你只读,有些则可以读写. 与 ...
- PAT基础级-钻石段位样卷2-7-2 吃鱼还是吃肉 (10 分)
国家给出了 8 岁男宝宝的标准身高为 130 厘米.标准体重为 27 公斤:8 岁女宝宝的标准身高为 129 厘米.标准体重为 25 公斤. 现在你要根据小宝宝的身高体重,给出补充营养的建议. 输 ...