费马小定理 x
费马小定理(Fermat Theory)
是数论中的一个重要定理,其内容为:
假如p是质数,且gcd(a,p)=1,那么 a(p-1)≡1(mod p)。即:假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p的余数恒等于1。
a^(p-1)%p=1
(其中%为取模操作,且a<p,p为质数)
费马小定理是初等数论四大定理(威尔逊定理,欧拉定理(数论中的欧拉定理),中国剩余定理(又称孙子定理)之一,在初等数论中有着非常广泛和重要的应用。实际上,它是欧拉定理的一个特殊情况(即

,见于词条“欧拉函数”)。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<ctime>
#define ll long long int//能够直接使用long long using namespace std; ll n;
ll pd[]={,,,,,,,,,,};
ll fastmul(ll a,ll b)
{
ll r=;
ll base=a;
while(b!=)
{
if(b%!=)
{
b--;
r=(r+base)%n;
}
b=b/;
base=(base+base)%n;
}
return r%n;
}
ll fastpow(ll a,ll b)
{
ll r=;
ll base=a;
while(b!=)
{
if(b%!=)
r=fastmul(r,base)%n;
base=fastmul(base,base)%n;
b=b/;
}
return r%n;
}
ll check(ll n)
{
if(n==) return ;
if(n<&&(n%==)) return ;
for(ll i=;i<;i++)
{
ll x=pd[i];//进行特判
if(x%n==)
continue;//继续往下判断循环条件执行语句
ll ans=fastpow(x,n-)%n;
if(ans!=)
return ;
}
return ;
}
int main()
{
//srand(time(0));
//scanf("%lld",&n);
cin>>n;
for(int i=;i<=n;i++)
{
if(check(i)) printf("%d\n",i);
}
return ;
}
费马小定理 x的更多相关文章
- hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)
题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3. ...
- nyoj1000_快速幂_费马小定理
又见斐波那契数列 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描述 斐波那契数列大家应该很熟悉了吧.下面给大家引入一种新的斐波那契数列:M斐波那契数列. M斐波那契数列 ...
- poj 3734 Blocks 快速幂+费马小定理+组合数学
题目链接 题意:有一排砖,可以染红蓝绿黄四种不同的颜色,要求红和绿两种颜色砖的个数都是偶数,问一共有多少种方案,结果对10007取余. 题解:刚看这道题第一感觉是组合数学,正向推了一会还没等推出来队友 ...
- 数论初步(费马小定理) - Happy 2004
Description Consider a positive integer X,and let S be the sum of all positive integer divisors of 2 ...
- 【BZOJ1951】【SDOI2010】古代猪文 Lucas定理、中国剩余定理、exgcd、费马小定理
Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...
- 数论 --- 费马小定理 + 快速幂 HDU 4704 Sum
Sum Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=4704 Mean: 给定一个大整数N,求1到N中每个数的因式分解个数的 ...
- HDU 5667 Sequence 矩阵快速幂+费马小定理
题目不难懂.式子是一个递推式,并且不难发现f[n]都是a的整数次幂.(f[1]=a0;f[2]=ab;f[3]=ab*f[2]c*f[1]...) 我们先只看指数部分,设h[n]. 则 h[1]=0; ...
- HDU 5793 A Boring Question (逆元+快速幂+费马小定理) ---2016杭电多校联合第六场
A Boring Question Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
- HDU 1098 Ignatius's puzzle 费马小定理+扩展欧几里德算法
题目大意: 给定k,找到一个满足的a使任意的x都满足 f(x)=5*x^13+13*x^5+k*a*x 被65整除 推证: f(x) = (5*x^12 + 13 * x^4 + ak) * x 因为 ...
- HDU4675【GCD of scequence】【组合数学、费马小定理、取模】
看题解一开始还有地方不理解,果然是我的组合数学思维比较差 然后理解了之后自己敲了一个果断TLE.... 我以后果然还得多练啊 好巧妙的思路啊 知识1: 对于除法取模还需要用到费马小定理: a ^ (p ...
随机推荐
- 数据校验-hibernate-validator
数据校验 在web开发时,对于请求参数,一般上都需要进行参数合法性校验的,原先的写法时一个个字段一个个去判断,这种方式太不通用了,所以java的JSR 303: Bean Validation规范就是 ...
- 红帽linux系统开机自启动脚本。
其实很多东西在最后完成以后会觉得也就那样,有意思的是探究的过程. 前段时间老板要求把一个程序做成linux系统开机自启动脚本的模式. 首先你需要写一个脚本. 我这边建立了一个.sh的脚本,就是用脚本启 ...
- (一)SpringBoot之简介和安装插件以及HelloWorld第一个程序
一.简介 Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程.该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的 ...
- mysql 2 修改表
1 修改表名 rename table aaa to bbb; 或者 rename table aaa to bbb; 2 修改字段的数据类型 alter table person modify na ...
- [学习笔记]pb_ds库
前言 其实我很早开始就用pb_ds库了,用起来确实方便.但最近感觉还是对这个了解颇少,还是来补一下 话说有人会忘记头文件,其实这有个伎俩,找到电脑上的g++文件夹.Ubuntu应该在etc中,Wind ...
- MFC如何显示位图
1. 资源文件中加载 bmp 2.1. 静态加载图片 在属性下设置为如下即可 2.2 动态加载图片 其中要在控件中添加CStatic变量,并且属性设置为如下 并且在按钮控件中加入 如下代码 void ...
- MySQL5.6.11安装步骤(Windows7 64位)
1. 下载MySQL Community Server 5.6.21,注意选择系统类型(32位/64位) 2. 解压MySQL压缩包 将以下载的MySQL压缩包解压到自定义目录下. 3. 添加环境变量 ...
- css滑动门技术
滑动门的核心技术: 为了使各种特殊形状的背景能够自适应元素中文本内容的多少,以使自由拉伸滑动 利用css精灵(主要是背景位置)和盒子padding撑开宽度,以便适应不同字数的导航栏 一般经典布局 &l ...
- S2-032
前言 S2-032漏洞的影响范围是Struts 2.3.20 - Struts Struts 2.3.28,当开启了动态方法调用时可RCE.这次的漏洞分析以及后面的漏洞分析都是使用的Struts 2. ...
- CSS 样式表{二}
1 选择器的优先级 选择器的优先主要考虑选择器的权重 可以将各种选择器的权重以数值来表示,数值越大,优先级越高 选择器 权重值 标签selector 1 类选择器 10 ID选择器 100 行内样式 ...