最长回文 HDU - 3068(马拉车算法)
Problem Description
回文就是正反读都是一样的字符串,如aba, abba等
Input
输入有多组case,不超过120组,每组输入为一行小写英文字符a,b,c...y,z组成的字符串S
两组case之间由空行隔开(该空行不用处理)
字符串长度len <= 110000
Output
每一行一个整数x,对应一组case,表示该组case的字符串中所包含的最长回文长度.
Sample Input
aaaa abab
Sample Output
4
3
先看代码:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define maxx 101000
char s[maxx],s1[maxx*];
int mp[maxx*];
void Manacher(int l)
{
int k=;
s1[k++]='$';s1[k++]='#';
for(int i=;i<l;i++)
{
s1[k++]=s[i];
s1[k++]='#';
}
s1[k]=;
int mx=,id=;
for(int i=;i<k;i++)
{
mp[i]=mx>i?min(mp[*id-i],mx-i):;
while(s1[i+mp[i]]==s1[i-mp[i]])
mp[i]++;
if(i+mp[i]>mx)
{
mx=i+mp[i];
id=i;
}
}
}
int main()
{
while(~scanf("%s",s))
{
int l=strlen(s);
int ans=;
Manacher(l);
for(int i=;i<*l+;i++)
ans=max(ans,mp[i]-);
cout<<ans<<endl;
}
return ;
}
思路:
代码虽不长,主要需要理解的就是:
mp[i]=mx>i?min(mp[2*id-i],mx-i):1;
一般想法都是从1开始慢慢向两边移动来试探,而马拉车主要就是优化了每次试探P[i]的时候不一定需要从1开始,P[i]代表当前下标i为中心的字符串的回文串半径。
下图中 j 点代表是 i 关于 id 的对称点 ,j=2*id-i;
mx的对称点 j id i mx
id表示的就是最长回文串的中心,从图观察i与j关于Id对称,i是从2开始枚举过来已经经过了j的位置,那么j位置的最长回文串就可以确定了,如图所示;如果回文串完全被id的回文串所包围,那么根据对称原理i点的回文串的长度最少就是j点回文串的长度。即如果回文串的子串也是回文串,那么这个子串关于主串中心对称而得的子串也是一个回文串。接下来要确定的就是通过j点所能确定的i点回文串的长度最多是多少。首先应该明确,如果i点跑到mx(id点回文串所确定的范围边界)外面去了,那么j点无论如何缩减范围都不可能是id回文串的子串,就不满足上面加粗的结论了。就一定只能从1开始慢慢试探。这就是当mx < i的时候,MP[i] = 1的原因了。
还有两种情况
一种就是上图中,j所确定的回文串完全被包含,即整个串都是其子串。那么i的可确定回文串范围就是j的回文串范围,MP[i]就变成了MP[j]。
还有一种情况就是j的回文串已经超出了mx的范围
mx的对称点 j id i mx
对于绿线以外的区域完全未知,所以必须将MP[j]减去红线外的范围才是i的可确定范围。或者理解为只有两端都去掉外面的部分之后,剩下的才是id回文串的子串,才可以对称过去成为i的回文串。然后再在已确定的范围基础上向两边扩展。
最长回文 HDU - 3068(马拉车算法)的更多相关文章
- (最长回文串 模板) 最长回文 -- hdu -- 3068
http://acm.hdu.edu.cn/showproblem.php?pid=3068 最长回文 Time Limit: 4000/2000 MS (Java/Others) Memory ...
- 最长回文子串 —— Manacher (马拉车) 算法
最长回文子串 回文串就是原串和反转字符串相同的字符串.比如 aba,acca.前一个是奇数长度的回文串,后一个是偶数长度的回文串. 最长回文子串就是一个字符串的所有子串中,是回文串且长度最长的子串. ...
- 最长回文 HDU - 3068 manacher 模板题
题意:找串的最长回文字串(连续) 题解:manacher版题 一些理解:首位加上任意两个字符是为了判断边界. 本算法主要是为了 1.省去奇偶分类讨论. 2.防止形如aaaaaaa的串使得暴力算法蜕化为 ...
- 最长回文 HDU 3068 (裸的Manacher)
直接看代码: ============================================================================================= ...
- Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法)
Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法) Given a string s, find the longest pal ...
- 最长回文子串的Manacher算法
对于一个比较长的字符串,O(n^2)的时间复杂度是难以接受的.Can we do better? 先来看看解法2存在的缺陷. 1) 由于回文串长度的奇偶性造成了不同性质的对称轴位置,解法2要对两种情况 ...
- 最长回文子串(Manacher算法)
回文字符串,想必大家不会不熟悉吧? 回文串会求的吧?暴力一遍O(n^2)很简单,但当字符长度很长时便会TLE,简单,hash+二分搞定,其复杂度约为O(nlogn), 而Manacher算法能够在线性 ...
- 51nod1089(最长回文子串之manacher算法)
题目链接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1089 题意:中文题诶~ 思路: 我前面做的那道回文子串的题 ...
- 求最长回文子串:Manacher算法
主要学习自:http://articles.leetcode.com/2011/11/longest-palindromic-substring-part-ii.html 问题描述:回文字符串就是左右 ...
随机推荐
- C语言学习笔记1-数据类型和标识符
http://blog.csdn.net/jadeshu/article/details/50751901 1.数据类型 ---1.1基本类型 --------------数值型(short(2) i ...
- oc Learning Blog
http://www.cnblogs.com/heyonggang/p/3351269.html M了个J :http://www.cnblogs.com/mjios/tag/objective-c/ ...
- JMeter-jp@gc - PerfMon Metrics Collector-CPU监控工具的配置及使用(win版本)
服务器端放这个 如果端口号被占用,默认报这个错: 如果默认的4444端口被占用的修改: C:\Users\Administrator>CD E:\E:\apache-jmeter-4.0\Ser ...
- JMeter-正则表达式(取出银行卡号后4位)
{ : "custName":"奚红艳", : "banks": : [ : : { : : : "id":" ...
- js 删除 按钮所在的行
<body> <table id="delte"> <caption>简易购物车</caption> <tr> < ...
- linux - mysql:查看 mysql 是否安装成功
命令 rpm -q mysql 结果 成功: 失败:
- 007-log-log4j2、slf4j+log4j2
一.概述 而log4j2的性能无论在同步日志模式还是异步日志模式下都是最佳的. 根本原因在于log4j2使用了LMAX, 一个无锁的线程间通信库代替了, logback和log4j之前的队列. 并发性 ...
- spring 事务-使用@Transactional 注解(事务隔离级别)
转: spring 事务-使用@Transactional 注解(事务隔离级别) 2016年08月11日 21:49:20 华华鱼 阅读数 15490 标签: spring事务Transactiona ...
- C++ STL partial_sort
#include <iostream>#include <deque>#include <algorithm>#include <vector> usi ...
- Qt编写安防视频监控系统4-删除视频
一.前言 一般会有两种处理方式来删除视频,一种是鼠标右键菜单,删除当前视频或者删除所有视频,一种是直接按住当前视频,移到视频通道界面以外就表示删除当前视频,这也是个比较人性化的设置,每个人的喜好不一样 ...