1.Ubuntu虚拟机上安装NC SDK

   cd /home/shine/Downloads/
   mkdir NC_SDK
   git clone https://github.com/movidius/ncsdk.git
   make install

  通过运行测试例程判断是否正确安装

   make examples

2.激活USB设备

  在启动ubuntu前,请不要插入movidius,等ubuntu启动以后,再插入(知乎用户经验,笔者测试不影响)

3.测试工程

   cd /home/shine/Downloads/NC_SDK/ncsdk/examples/apps/hello_ncs_cpp/
   make run
   cd /home/shine/Downloads/NC_SDK/ncsdk/examples/apps/hello_ncs_py/
   make run

  正常结果显示

   Hello NCS! Device opened normally.
   Goodbye NCS! Device Closed normally.
   NCS device working.

4.训练工程

  ncappzoo中提供了大量的工程样例提供分析,为开发者的模型选择提供了极大的便利,在选择模型的时候需要综合权衡训练样本的类型、大小以及部署后的运行速度。

   cd /home/shine/Downloads/NC_SDK/ncsdk/
   git clone https://github.com/ashwinvijayakumar/ncappzoo
   git checkout dogsvscats

  以猫和狗的分类任务为例

  • 数据集的准备(在百度网盘中共享测试数据集和训练数据集)

    https://pan.baidu.com/s/1mtXYfB61Czkadjrgs4RXzw

    https://pan.baidu.com/s/1ZD4Hocgk4bMcl8tQGkTHcQ

   cd ncappzoo/apps/dogsvscats
   mkdir data
   mv /home/shine/Downloads/test1.zip ~/Downloads/ncappzoo/apps/dogsvscats/data/
   mv /home/shine/Downloads/train.zip ~/Downloads/ncappzoo/apps/dogsvscats/data/
   cd ncappzoo/apps/dogsvscats
   make

  上述操作主要执行

   Image pre-processing - resizing , cropping , histogram equalization (图像预处理)
   Shuffling the images (图像打乱)
   Splitting the images into training and validation (图像分割为训练集和测试集)
   Creating an lmdb database of these images (格式转换)
   Computing image mean -a common deep learning technique used to normalize data (计算图像均值)  

  • 模型对比

  ①比较模型的差异

   export CAFFE_PATH=~/Downloads/caffe-master
   diff -u $CAFFE_PATH/models/bvlc_googlenet bvlc_googlenet/org 
  • 数据训练

  ①下载caffe预训练模型,使用本地CPU或GPU进行训练,CAFFE_PATH需要替换为本地安装目录

   $CAFFE_PATH/scripts/download_model_binary.py $CAFFE_PATH/models/bvlc_googlenet
   $CAFFE_PATH/build/tools/caffe train --solver bvlc_googlenet/org/solver.prototxt --weights $CAFFE_PATH/models/bvlc_googlenet/bvlc_googlenet.caffemodel 2>&1 | tee bvlc_googlenet/org/train.log
    #错误1:Cannot use GPU in CPU-only Caffe: check mode
    cd ~/Downloads/ncappzoo/apps/dogsvscats/bvlc_googlenet/org
    vim solver.prototxt
    将其中的 solver_mode: GPU改为 solver_mode: CPU 或者将caffe重新编译成GPU模式    #错误2:Check failed: error == cudaSuccess (2 vs. 0) out of memory
    由于博主使用的是GTX 650Ti 显存只有979Mb,执行GPU运算的时候出现显存不足的现象

   ②使用Intel AI Cloud 加速训练

    如上文所述,在本地训练数据是一个巨大的运算量,常常需要几周或几个月,因此使用Intel提供的云服务器可以极大缩短训练的时间

    在terminal中使用如下语句登陆到AI Cloud 服务器

    ssh colfax
    mkdir dogsvscats   

   登陆成功后即显示

    ########################################################################
    # Welcome to Intel AI DevCloud!
    ########################################################################

   将训练dogsvscats工程所需的数据集及shell命令上传到服务器(请根据实际目录进行调整,若上传速度较慢请尝试云服务器wget直接下载开放数据集)

   scp /home/shine/Downloads/ncappzoo/apps/dogsvscats/data/train.zip colfax:/home/u14673/ncappzoo/apps/dogsvscats/data/
   scp /home/shine/Downloads/ncappzoo/apps/dogsvscats/data/test1.zip .zip colfax:/home/u14673/ncappzoo/apps/dogsvscats/data/

   将对应的shell文件和Makefile上传到服务器用于训练数据预处理(请根据实际目录进行调整)

   scp /home/shine/Downloads/ncappzoo/apps/dogsvscats/Makefile colfax:/home/u14673/ncappzoo/apps/dogsvscats/
   scp /home/shine/Downloads/ncappzoo/apps/dogsvscats/create-labels.py colfax:/home/u14673/ncappzoo/apps/dogsvscats/
   scp /home/shine/Downloads/ncappzoo/apps/dogsvscats/create-lmdb.sh colfax:/home/u14673/ncappzoo/apps/dogsvscats/

   使用Makefile进行预处理,由于Makefile中deps含有sudo apt-get -y install unzip和sudo pip install pyyaml,且sudo apt-get在AI Cloud中无法运行

   vi Makefile 

   将deps更改为

     @echo "Installing dependencies..."
   # sudo apt-get -y install unzip
   # sudo pip install pyyaml

   :wq!保存后退出,创建任务用于数据预处理

   vi data_process.sh 

   在打开的界面中输入(请根据实际目录进行调整)

    echo "Start Data Process"
    cd /home/u14673/ncappzoo/apps/dogsvscats/
    make all
    echo "Data Process Finished" 

   :wq!保存后退出,提交任务开始数据预处理

    qsub data_process.sh 

    使用qstat可以查看任务完成的情况,完成后会在当前目录中生成对应的日志文件 

   将训练所需的prototxt及预训练模型上传至AI Cloud

   scp -r /home/shine/Downloads/ncappzoo/apps/dogsvscats/bvlc_googlenet colfax:/home/u14673/ncappzoo/apps/dogsvscats/
   scp /home/shine/Downloads/caffe/models/bvlc_googlenet/bvlc_googlenet.caffemodel colfax:/home/u14673/ncappzoo/apps/dogsvscats/

    创建任务用于数据训练

   vi data_train.sh  

     在打开的界面中输入如下语句(请根据实际目录进行调整)      

   cd /home/u14673/ncappzoo/apps/dogsvscats/
   echo 'Start Trainning'
   # >&表示所有的标准输出和标准错误输出都将被重定向
   /glob/intel-python/python3/bin/caffe train --solver bvlc_googlenet/org/solver.prototxt --weights /home/u14673/ncappzoo/apps/dogsvscats/bvlc_googlenet.caffemodel 2>&1 | tee bvlc_googlenet/org/train.log    

   关于caffe train命令的定义,标准的范例如下

     caffe train \
--solver=solver_1st.prototxt \
--weights=VGG/VGG_ILSVRC_16_layers.caffemodel \
--gpu=0,1,2,3 2>&1 | tee log_1st.txt
   其中--solver为必要的参数,配置solver文件
   如果从头开始训练模型,则无需配置--weights
   如果从快照中恢复,则需要配置--snapshot
   如果是fine-tuning,则需要配置
--weights

   :wq!保存后退出,提交任务开始训练,训练完成后在当前目录可以看到日志文件

   qsub data_train.sh   

   查看日志,日志保存在 bvlc_googlenet/org 目录,使用如下命令将数据拷贝到本地

   scp colfax:/home/u14673/ncappzoo/apps/dogsvscats/bvlc_googlenet/org/train.log ./   

   使用caffe自带的工具绘制(位于caffe/tools/extra目录)训练数据,caffe中支持很多种曲线绘制,通过指定不同的类型参数即可,具体参数如下

  Notes:
  1. Supporting multiple logs.
  2. Log file name must end with the lower-cased ".log".
  Supported chart types:
  0: Test accuracy vs. Iters
  1: Test accuracy vs. Seconds
  2: Test loss vs. Iters
  3: Test loss vs. Seconds
  4: Train learning rate vs. Iters
  5: Train learning rate vs. Seconds
  6: Train loss vs. Iters
  7: Train loss vs. Seconds  

   解析日志并生成Test accuracy  vs. Seconds曲线(实际应该为Test Loss,参考https://www.cnblogs.com/WaitingForU/p/9130327.html的解析)

    cd ~/Downloads/ncappzoo/apps/dogsvscats/bvlc_googlenet/org    
cp -r /home/shine/Downloads/caffe/tools/extra ~/Downloads/ncappzoo/apps/dogsvscats/bvlc_googlenet/org
   mv train.log ./extra/
   ./plot_training_log.py.example 0 save.png ./train.log

    

                   Test Loss Vs Seconds 

   

                    Train Loss Vs Seconds

   从上述两张图来看,似乎训练过程并未收敛,对于这一问题,原作者并未给出原因,而是建议去掉--weights重新进行训练   

  /glob/intel-python/python3/bin/caffe train --solver bvlc_googlenet/org/solver.prototxt 2>&1 | tee bvlc_googlenet/org/train_withoutweights.log

   

                      Test Loss Vs Iters

   

                    Test Accuracy Vs Iters

   将训练后的模型拷贝到本地

  scp colfax:/home/u14673/ncappzoo/apps/dogsvscats/bvlc_googlenet/org/bvlc_googlenet_iter_40000.caffemodel /home/shine/Downloads/ncappzoo/apps/dogsvscats/bvlc_googlenet/org/
  cd ~/Downloads/ncappzoo/apps/dogsvscats/bvlc_googlenet/org/

   本地机器(需要安装NCSDK)查看网络分析,大致可以得到如下的图形,显示了各层连接的带宽和运行时间

  mvNCProfile -s 12 deploy.prototxt -w bvlc_googlenet_iter_40000.caffemodel
  firefox output_report.html

   

  • 模型调优

   作者对比了dogsvscats例程中改进的网络和GoogLenet原始网络,通过Caffe自带的Python工具分别绘制对应网络拓扑

  cd ~/Downloads/ncappzoo/apps/dogsvscats/bvlc_googlenet/org
  python ~/Downloads/caffe/python/draw_net.py train_val.prototxt train_val_plot.png
  eog train_val_plot.png
  cd ~/Downloads/ncappzoo/apps/dogsvscats/bvlc_googlenet/custom
  python ~/Downloads/caffe/python/draw_net.py train_val.prototxt train_val_plot.png
  eog train_val_plot.png

   使用python-caffe自带的工具draw_net.py时可能会遇到如下错误

  #错误1 ImportError: No module named google.protobuf (没有安装python-protobuf) 
      sudo apt-get install python-protobuf   #错误2 ImportError: No module named _caffe (caffe源码编译的时候没有编译pycaffe)
      cd ~/Downloads/caffe/
      sudo make pycaffe   #错误3 ImportError: No module named skimage.io (没有安装python-skimage) 
      sudo apt-get install python-skimage   #错误4 ImportError: No module named pydot (没有安装python-pydot)
      sudo apt install python-pydot python-pydot-ng graphviz
  • 模型部署

根据最新训练的结果,生成graph文件

  cd ~/workspace/ncappzoo/apps/dogsvscats/bvlc_googlenet/org (由于前面训练过程未能收敛,使用该模型预测时会出现Nan的结果)
  mvNCCompile -s 12 deploy.prototxt -w bvlc_googlenet_iter_40000.caffemodel -o dogsvscats-org.graph
  cd ~/workspace/ncappzoo/apps/dogsvscats/bvlc_googlenet/custom (定制优化后的网络)
  mvNCCompile -s 12 deploy.prototxt -w bvlc_googlenet_iter_40000.caffemodel -o dogsvscats-org.graph
  • 模型测试

  修改ncappzoo/apps/image-classifier.py,原文件如下

  # User modifiable input parameters
  NCAPPZOO_PATH = '../..'
  GRAPH_PATH = NCAPPZOO_PATH + '/caffe/GoogLeNet/graph'
  IMAGE_PATH = NCAPPZOO_PATH + '/data/images/cat.jpg'
  CATEGORIES_PATH = NCAPPZOO_PATH + '/data/ilsvrc12/synset_words.txt'
  IMAGE_MEAN = numpy.float16( [104.00698793, 116.66876762, 122.67891434] )
  IMAGE_STDDEV = ( 1 )
  IMAGE_DIM = ( 224, 224 )

  修改后的文件如下

  NCAPPZOO_PATH           = '../..'
  GRAPH_PATH = NCAPPZOO_PATH +'/apps/dogsvscats/bvlc_googlenet/custom/dogsvscats-org.graph'
  IMAGE_PATH = NCAPPZOO_PATH +'/apps/dogsvscats/data/test1/173.jpg'
  CATEGORIES_PATH = NCAPPZOO_PATH +'/apps/dogsvscats/data/categories.txt'
  IMAGE_MEAN = numpy.float16( [106.202, 115.912, 124.449] )
  IMAGE_STDDEV = ( 1 )
  IMAGE_DIM = ( 224, 224 )

  使用生成的graph测试准确率(注意是python3,使用python image-classifier.py时会报错,具体原因待查明)

  cd ~/Downloads/ncappzoo/apps/image-classifier
  python3 image-classifier.py

  得到结果如下

  ------- predictions --------
  Prediction for : dog with 100.0% confidence in 89.67 ms
  Prediction for : cat with 0.0% confidence in 89.67 ms

  那么关于本步骤部署,系统具体作了哪些事情呢,深入查看image-classifier.py我们可以得知

  # ---- Step 1: Open the enumerated device and get a handle to it -------------
  # 枚举Movidius神经元计算棒
  # ---- Step 2: Load a graph file onto the NCS device -------------------------
  # 加载graph文件
  # ---- Step 3: Offload image onto the NCS to run inference -------------------
  # 加载image文件
  # ---- Step 4: Read & print inference results from the NCS -------------------
  # 读取并打印运算结果
  # ---- Step 5: Unload the graph and close the device -------------------------
  # 关闭神经元计算棒
  • 模型调优  
  • 参考文献:

   1.https://movidius.github.io/blog/deploying-custom-caffe-models

   2.https://communities.intel.com/community/tech/intel-ai-academy

   3.https://www.kaggle.com/khorchanov/dogsvscats

Movidius的深度学习入门的更多相关文章

  1. 给深度学习入门者的Python快速教程 - 番外篇之Python-OpenCV

    这次博客园的排版彻底残了..高清版请移步: https://zhuanlan.zhihu.com/p/24425116 本篇是前面两篇教程: 给深度学习入门者的Python快速教程 - 基础篇 给深度 ...

  2. 给深度学习入门者的Python快速教程 - numpy和Matplotlib篇

    始终无法有效把word排版好的粘贴过来,排版更佳版本请见知乎文章: https://zhuanlan.zhihu.com/p/24309547 实在搞不定博客园的排版,排版更佳的版本在: 给深度学习入 ...

  3. 深度学习入门实战(二)-用TensorFlow训练线性回归

    欢迎大家关注腾讯云技术社区-博客园官方主页,我们将持续在博客园为大家推荐技术精品文章哦~ 作者 :董超 上一篇文章我们介绍了 MxNet 的安装,但 MxNet 有个缺点,那就是文档不太全,用起来可能 ...

  4. 给深度学习入门者的Python快速教程

    给深度学习入门者的Python快速教程 基础篇 numpy和Matplotlib篇 本篇部分代码的下载地址: https://github.com/frombeijingwithlove/dlcv_f ...

  5. Python学习(二)——深度学习入门介绍

    课程二:深度学习入门 讲师:David (数据分析工程师) 这门课主要介绍了很多神经网络的基本原理,非常非常基础的了解. 零.思维导图预览:                一.深度神经网络 1.神经元 ...

  6. 学习《深度学习入门:基于Python的理论与实现》高清中文版PDF+源代码

    入门神经网络深度学习,推荐学习<深度学习入门:基于Python的理论与实现>,这本书不来虚的,一上来就是手把手教你一步步搭建出一个神经网络,还能把每一步的出处讲明白.理解神经网络,很容易就 ...

  7. 深度学习入门者的Python快速教程 - 基础篇

      5.1 Python简介 本章将介绍Python的最基本语法,以及一些和深度学习还有计算机视觉最相关的基本使用. 5.1.1 Python简史 Python是一门解释型的高级编程语言,特点是简单明 ...

  8. 最全的机器学习&深度学习入门视频课程集

    资源介绍 链接:http://pan.baidu.com/s/1kV6nWJP 密码:ryfd     链接:http://pan.baidu.com/s/1dEZWlP3 密码:y82m 更多资源 ...

  9. mnist手写数字识别——深度学习入门项目(tensorflow+keras+Sequential模型)

    前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型 ...

随机推荐

  1. java_day08_GUI

    第八章:GUI组件 1.GUI概述-AWT和Swing 图形用户界面(Graphics User Interface, GUI) 是用户与程序交互的窗口,它比基于命令行的界面更直观并且更友好. GUI ...

  2. Winfrom TextBox 添加水印文字 + 字体颜色

    using System.Drawing; using System.Windows.Forms; namespace KK.WaterMark.Control { public partial cl ...

  3. UDS报文解读

    UDS(Unified Diagnostic Services,统一的诊断服务)诊断协议是ISO 15765 和ISO 14229 定义的一种汽车通用诊断协议,位于OSI模型中的应用层,它可在不同的汽 ...

  4. 8.5.zookeeper应用案例_分布式应用HA

    1.实现分布式应用(主节点HA)及客户端动态更新主节点状态 需求:某分布式系统中,主节点可以有多台,服务器可以动态(变化)上下线,任意一台客户端都能实时感知到主节点服务器的上下线 思路:架设Zooke ...

  5. Python学习 第一天(一)初始python

    1.python的前世今生 想要充分的了解一个人,无外乎首先充分了解他的过去和现在:咱们学习语言也是一样的套路 1.1 python的历史 Python(英国发音:/ˈpaɪθən/ 美国发音:/ˈp ...

  6. Linux之yum安装LAMP环境与管理

    [1] 什么是LAMP 目前世界最流行的企业建站方式是LAMP(Linux+Apache+MySQL+PHP),即使用Linux作为操作系统,Apache作为Web服务器,MySQL作为数据库,PHP ...

  7. R树-javascript代码实现过程分析(插入操作)

    R Tree 第一步,创建R树类. 构建一个RTree生成器.用以创建tree对象. 例子:var tree = new RTree(12) var RTree = function(width){ ...

  8. adb常见命令

    adb(Android  Debug  Bridge)主要存放在sdk安装目录下的platform-tools文件夹中,他是一个非常强大的命令行工具.学习adb命令是我在从事兼职测试工作的时候需要掌握 ...

  9. Android及java中list循环添加时覆盖的问题-20171021

    鉴于新浪博客太渣,转到这来. 最近在工程设计时,使用list循环添加map对象发现,最终全部变为最后一个map的值,但是list的数值还是正确的,也就是说添加了N(list长度或者说循环的次数)个相同 ...

  10. freemarker 生成word

    一.生成模板,动态获取的部分用${变量名},然后将word另存为xml文件,再将后缀名改成ftl格式.然后将模板放在对应的目录下. 二.引入freemarker包,mawen引用 <depend ...