题目描述

给出 $n$ 个赛车赛道和A、B、C三种赛车,除了 $d$ 个赛道可以使用所有三种赛车以外每个都只能使用给出的两种之一。另外给出 $m$ 条限制:某个赛道使用X则某另一个赛道必须使用Y。问:是否存在一种方案满足所有条件?输出一种合法方案。

$n\le 50000,d\le 8,m\le 100000$ 。


题解

2-SAT

3-SAT是NP完全问题,由于 $d$ 只有 $8$ ,因此考虑枚举每个万能位置的取值,转化为2-SAT问题。

那么对于一条限制,显然描述对应着一条边;另外一个命题的逆否命题,因此则有:第二个不用Y,第一个就不能用X,还要连这样的边(考场上没有想到对称边,还以为标算不是2-SAT)。

特殊情况:
第一个没有X,则无视这条边;
第二个没有Y,则第一个不能选X,第一个选X向不选X连边。

然后跑tarjan,对立点在同一强连通分量里则不成立,否则有解。缩点建新图跑拓扑排序,对立点中先排到的点不选,后排到的选。

这里有一个小trick:tarjan中强连通分量的编号顺序就是逆拓扑序(考虑tarjan的过程,挺好理解的),因此不用实际拓扑排序,直接比较对立点所属强连通分量编号即可,较小的那个是相应方案。

这样枚举万能位置的选择,每个位置有三种情况。考虑到枚举万能位置不能选什么,一次可以选出两种,只需要枚举两种情况。

时间复杂度 $O(2^dm)$

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 100010
using namespace std;
int n , m , flag , px[N] , vx[N] , py[N] , vy[N] , head[N] , to[N << 1] , next[N << 1] , cnt , deep[N] , low[N] , tot , ins[N] , sta[N] , top , bl[N] , num;
char str[N >> 1] , sx[3] , sy[3];
inline void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
inline int getid(int p , int v)
{
if(str[p] == 'a') return v == 0 ? 0 : p * 2 + v - 1;
else if(str[p] == 'b') return v == 1 ? 0 : p * 2 + v / 2;
else return v == 2 ? 0 : p * 2 + v;
}
void tarjan(int x)
{
int i;
deep[x] = low[x] = ++tot , ins[x] = 1 , sta[++top] = x;
for(i = head[x] ; i ; i = next[i])
{
if(!deep[to[i]]) tarjan(to[i]) , low[x] = min(low[x] , low[to[i]]);
else if(ins[to[i]]) low[x] = min(low[x] , deep[to[i]]);
}
if(deep[x] == low[x])
{
int t;
num ++ ;
do
{
t = sta[top -- ];
ins[t] = 0 , bl[t] = num;
}while(t != x);
}
}
void solve()
{
int i , x , y;
memset(head , 0 , sizeof(head));
memset(deep , 0 , sizeof(deep));
cnt = tot = top = num = 0;
for(i = 1 ; i <= m ; i ++ )
{
x = getid(px[i] , vx[i]) , y = getid(py[i] , vy[i]);
if(x)
{
if(y) add(x , y) , add(y ^ 1 , x ^ 1);
else add(x , x ^ 1);
}
}
for(i = 2 ; i <= 2 * n + 1 ; i ++ ) if(!deep[i]) tarjan(i);
for(i = 1 ; i <= n ; i ++ ) if(bl[i << 1] == bl[i << 1 | 1]) return;
flag = 1;
for(i = 1 ; i <= n ; i ++ )
{
if(str[i] == 'a') putchar(bl[i << 1] < bl[i << 1 | 1] ? 'B' : 'C');
else if(str[i] == 'b') putchar(bl[i << 1] < bl[i << 1 | 1] ? 'A' : 'C');
else putchar(bl[i << 1] < bl[i << 1 | 1] ? 'A' : 'B');
}
puts("");
}
void dfs(int x)
{
if(flag) return;
if(x > n)
{
solve();
return;
}
if(str[x] == 'x') str[x] = 'a' , dfs(x + 1) , str[x] = 'b';
dfs(x + 1);
}
int main()
{
int i;
scanf("%d%*d%s%d" , &n , str + 1 , &m);
for(i = 1 ; i <= m ; i ++ ) scanf("%d%s%d%s" , &px[i] , sx , &py[i] , sy) , vx[i] = sx[0] - 'A' , vy[i] = sy[0] - 'A';
dfs(1);
if(!flag) puts("-1");
return 0;
}

【uoj#317】[NOI2017]游戏 2-SAT的更多相关文章

  1. BZOJ 4945 UOJ #317 NOI2017 游戏 2-SAT 拓扑排序

    http://uoj.ac/problem/317 https://www.lydsy.com/JudgeOnline/problem.php?id=4945 我现在的程序uoj的额外数据通过不了,b ...

  2. P3825 [NOI2017]游戏

    题目 P3825 [NOI2017]游戏 做法 \(x\)地图外的地图好做,模型:\((x,y)\)必须同时选\(x \rightarrow y,y^\prime \rightarrow x^\pri ...

  3. 【BZOJ4945】[Noi2017]游戏 2-SAT

    [BZOJ4945][Noi2017]游戏 题目描述 题解:2-SAT学艺不精啊! 这题一打眼看上去是个3-SAT?哎?3-SAT不是NPC吗?哎?这题x怎么只有8个?暴力走起! 因为x要么不是A要么 ...

  4. [Luogu P3825] [NOI2017] 游戏 (2-SAT)

    [Luogu P3825] [NOI2017] 游戏 (2-SAT) 题面 题面较长,略 分析 看到这些约束,应该想到这是类似2-SAT的问题.但是x地图很麻烦,因为k-SAT问题在k>2的时候 ...

  5. bzoj3825 NOI2017 游戏

    题目背景 狂野飙车是小 L 最喜欢的游戏.与其他业余玩家不同的是,小 L 在玩游戏之余,还精于研究游戏的设计,因此他有着与众不同的游戏策略. 题目描述 小 L 计划进行nn 场游戏,每场游戏使用一张地 ...

  6. BZOJ4945 & 洛谷3825 & UOJ317:[NOI2017]游戏——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4945 https://www.luogu.org/problemnew/show/P3825 ht ...

  7. [NOI2017]游戏(2-SAT)

    这是约半年前写的题解了,就搬过来吧 感觉这是NOI2017最水的一题(当然我还是不会2333),因为是一道裸的2-SAT.我就是看着这道题学的2-SAT 算法一:暴力枚举.对于abc二进制枚举,对于x ...

  8. Luogu3825 NOI2017 游戏 2-SAT

    传送门 第一眼看上去似乎是一个3-SAT问题 然而\(d \leq 8\)给我们的信息就是:暴力枚举 枚举\(x\)型地图变成\(a\)型地图还是\(b\)型地图(实际上不要枚举\(c\),因为\(a ...

  9. NOI2017 [NOI2017]游戏 【2-sat】

    题目 题目背景 狂野飙车是小 L 最喜欢的游戏.与其他业余玩家不同的是,小 L 在玩游戏之余,还精于研究游戏的设计,因此他有着与众不同的游戏策略. 题目描述 小 L 计划进行nn 场游戏,每场游戏使用 ...

随机推荐

  1. C#基础之委托

    委托常常和事件在一起使用,可以理解委托是方法的容器,事件则是委托的另一种表现形式.委托和事件虽然写得还比较多,不过也只是用的熟练而已,趁周末没课好好巩固下基础,一点一点积累吧. 1.一个简单的小例子 ...

  2. 优步UBER司机全国各地奖励政策汇总:北京、上海、广州、深圳、佛山、天津、南京、武汉、成都、重庆、济南、西安、宁波、青岛、长沙、苏州

    Uber当周奖励政策 当前奖励包括:高峰翻倍奖励.行程奖励.金牌司机奖励 获得任何奖励的前提条件: 当周评分高于4.7分,当周成单率高于45%,且当周完成至少5单(含5单) 滴滴快车单单2.5倍,注册 ...

  3. SQL创建数据库、建表、填入内容

    --创建数据库 create database Information go --使用数据库 use Information go --创建表 create table Student ( Sno ) ...

  4. static和构造函数初始化顺序

    abstract class demo{ public demo() {} protected void a() { System.out.println("I am parents!&qu ...

  5. Phaser Matter Collision Plugin 碰撞插件 -- iFiero技术分享

    collision-simple-demo Phaser 自带的Arcade虽然易用,但复杂的物理碰撞明显就不够用了,于是Matter等物理引擎还是不得不学的,以下是Matter物理体碰撞的一个插件, ...

  6. linux云主机小技巧

    微信服务器安装 安装库 python 3.5环境下 pip安装web.py时 会报错 "no module named "utils" 等问题 更换命令为“pip ins ...

  7. 论文笔记:DeepFace: Closing the Gap to Human-Level Performance in Face Verification

    2014 CVPR Facebook AI研究院 简单介绍 人脸识别中,通常经过四个步骤,检测,对齐(校正),表示,分类 论文主要阐述了在对齐和表示这两个步骤上提出了新的方法,模型的表现超越了前人的工 ...

  8. Python爬虫入门(1-2):综述、爬虫基础了解

    大家好哈,最近博主在学习Python,学习期间也遇到一些问题,获得了一些经验,在此将自己的学习系统地整理下来,如果大家有兴趣学习爬虫的话,可以将这些文章作为参考,也欢迎大家一共分享学习经验. Pyth ...

  9. PIGCMS 关闭聊天机器人(小黄鸡)

    无脑操作举例 1.找到 WeixinAction.class.php 文件,路径: 你的版本\PigCms\Lib\Action\Home 2.查询 function chat ,在 chat() 函 ...

  10. Live Love(思维)

    DreamGrid is playing the music game Live Love. He has just finished a song consisting of n notes and ...