【LG5017】[NOIP2018pj]摆渡车

题面

洛谷

题解

震惊!普及组竟然考斜率优化???

当然有其他的方法

首先我们转化一下模型

此题可以变为:

在一根时间轴上有一些点,每个时间点\(i\)有一个权值\(c_i\)(即在\(i\)开始等待人数,没有则为\(0\))

要求选一些时间点,每个时间点间隔不小于\(m\)

使得每个点的权值乘上它与第一个大于等于它时间的已选择的时间点到它的距离之和最小 感觉讲得好复杂

设\(dp[i]\)表示当我们强制选时间点\(i\)的最小值

则有转移方程\(dp[i]=\min{dp[j]+\sum_{k=j+1}^i{(i-k)*c_k}}\) \((\)\(0\)\(\leq\)\(j\)\(\leq\)\(i-m\)\()\)

次数直接转移的复杂度为\(O(n^3)\)

考虑怎么优化,设

\(sum1[i]=\sum_{j=0}^i{c_j}\)

\(sum2[i]=\sum_{j=0}^i{c_j*j}\)

然后方程化为\(dp[i]=\min dp[j]+i*sum1[i]-i*sum1[j]-sum2[i]+sum2[j]\) \((\)\(0\)\(\leq\)\(j\)\(\leq\)\(i-m\)\()\)

此时复杂度为\(O(n^2)\)

继续优化,此时用上斜率优化

去掉\(min\),则

\(dp[i]=dp[j]+i*sum1[i]-i*sum1[j]-sum2[i]+sum2[j]\)

移项得\(dp[j]+sum2[j]=i*sum1[j]+dp[i]-i*sum1[j]+sum2[i]\)

将\(dp[j]+sum2[j]\)视为\(y\)

将\(i\)视为\(k\)

将\(sum1[j]\)视为\(x\)

队列优化下凸壳即可

复杂度\(O(n)\)

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <climits>
using namespace std;
#define MAX_T 4100000
int N, M, c[MAX_T];
int maxt, sum1[MAX_T], sum2[MAX_T];
int dp[MAX_T], q[MAX_T];
#define y(i) (dp[i] + sum2[i])
#define k(i) (i)
#define x(i) (sum1[i])
int main() {
cin >> N >> M;
for (int t, i = 1; i <= N; i++) cin >> t, c[t]++, maxt = max(maxt, t);
sum1[0] = c[0], sum2[0] = 0;
for (int i = 1; i < maxt + M; i++) {
sum1[i] = sum1[i - 1] + c[i];
sum2[i] = sum2[i - 1] + i * c[i];
}
int ans = INT_MAX;
int l = 1, r = 0;
for (int i = 0; i < maxt + M; i++) {
if (i - M >= 0) {
while (l < r && 1ll * (y(q[r]) - y(q[r - 1])) * (x(i - M) - x(q[r])) >=
1ll * (y(i - M) - y(q[r])) * (x(q[r]) - x(q[r - 1]))) -- r;
q[++r] = i - M;
}
while (l < r && 1ll * (y(q[l + 1]) - y(q[l])) <=
1ll * k(i) * (x(q[l + 1]) - x(q[l]))) ++l;
dp[i] = i * sum1[i] - sum2[i];
int j = q[l]; if (l <= r) dp[i] = min(dp[i], dp[j] + i * sum1[i] - i * sum1[j] - sum2[i] + sum2[j]);
}
for (int i = maxt; i < maxt + M; i++) ans = min(ans, dp[i]);
cout << ans << endl;
return 0;
}

【LG5017】[NOIP2018pj]摆渡车的更多相关文章

  1. [NOIP2018PJ]摆渡车

    [NOIP2018PJ]摆渡车 luogu mdPJ组这么难,还好考的TG组 先按t排序 设f[i][j]表示前i个人,第i个人等j分钟的最小总等待时间 这里j是小于2m的 可以考虑最坏情况下,一个人 ...

  2. [NOIP2018]摆渡车

    Description: 有 n 名同学要乘坐摆渡车从人大附中前往人民大学,第 i位同学在第 t 分钟去 等车.只有一辆摆渡车在工作,但摆渡车容量可以视为无限大.摆渡车从人大附中出发. 把车上的同学送 ...

  3. 【NOIP2018pj】题解

    [NOIP2018pj]题解 \(T1\) 题面 洛谷 题解 好像并没有什么好说的... #include <iostream> #include <cstdio> #incl ...

  4. 【LG5018】[NOIP2018pj]对称的二叉树

    [LG5018][NOIP2018pj]对称的二叉树 题面 洛谷 题解 看到这一题全都是用\(O(nlogn)\)的算法过的 考场上写\(O(n)\)算法的我很不开心 然后就发了此篇题解... 首先我 ...

  5. [NOIP2018PJ]对称二叉树

    [NOIP2018PJ]对称二叉树 这个题正常人看到题面难道不是哈希? 乱写了个树哈希... #include<bits/stdc++.h> using namespace std; co ...

  6. Luogu 5017 NOIP2018普及组T3 摆渡车 (斜率优化 + 必要的转移进行剪枝)

    题意: 有 n 名同学要乘坐摆渡车从人大附中前往人民大学,第 i 位同学在第 ti​ 分钟去 等车.只有一辆摆渡车在工作,但摆渡车容量可以视为无限大.摆渡车从人大附中出发. 把车上的同学送到人民大学. ...

  7. 『摆渡车 斜率优化dp及总结』

    摆渡车的题解我已经写过一遍了,在这里,这次主要从斜率优化的角度讲一下摆渡车,并总结一下斜率优化会出现的一些奇奇怪怪的错误. 摆渡车 Description 有 n 名同学要乘坐摆渡车从人大附中前往人民 ...

  8. [Noip 2018][标题统计 龙湖斗 摆渡车 对称二叉树]普及组题解

    啊喂,都已经9102年了,你还在想去年? 这里是一个Noip2018年PJ第二题打爆的OIer,错失省一 但经过了一年,我学到了很多,也有了很多朋友,水平也提高了很多,现在回看当时: 今年的Noip ...

  9. P5017 [NOIP2018 普及组] 摆渡车

    P5017 [NOIP2018 普及组] 摆渡车 题目 P5017 思路 将实际问题抽象后,不难发现这是一个 区间 \(DP\) 我们不妨认为时间是一条数轴,每名同学按照到达时刻分别对应数轴上可能重合 ...

随机推荐

  1. angularJs的工具方法2

    一.angular.isArray     判断是否是数组 var a = []; console.log(angular.isArray(a)); //判断参数里面的是否是数组 二.angular. ...

  2. [Python WEB开发] 使用WSGI开发类Flask框架 (二)

    WSGI     Web服务器网关接口 WSGI主要规定了Web服务器如何与Web应用程序进行通信,以及如何将Web应用程序链接在一起来处理一个请求. wsgiref Python中的WSGI参考模块 ...

  3. zabbix 表结构详情(基本)

    zabbix表结构 1.acknowledges 记录告警的确认信息 2.actions 记录了当触发器触发时,需要采用的动作. mysql> desc actions; +---------- ...

  4. keepalived 的进程/usr/sbin/keepalived -D 只有2个

    操作系统:openSUSE 11.3 (x86_64) /usr/sbin/keepalived -D  只有2条 日志:ls  /var/log/messages* -lrth Can't init ...

  5. POJ 3762 The Bonus Salary!(最小K覆盖)

    POJ 3762 The Bonus Salary! 题目链接 题意:给定一些任务.每一个任务有一个时间,有k天.一个时间仅仅能运行一个任务,每一个任务有一个价值.问怎么安排能得到最多价值 思路:典型 ...

  6. navicat导出数据库字典

    select TABLE_SCHEMA,TABLE_NAME,COLUMN_NAME,COLUMN_TYPE,COLUMN_COMMENT from information_schema.column ...

  7. 关于keil不同容量和不同引脚大小的编译以及下载出错问题

    如果遇到这个问题一般可能有四个原因(以STM32F103C8T6为例) 1.芯片型号没有选对 2.startup文件可能没有选对,startup文件常用的分为3种,startup_stm32f10x_ ...

  8. 如何使用tomcat,使用域名直接访问javaweb项目首页

    准备工作: 1:一台虚拟机 2:配置好jdk,将tomcat上传到服务器并解压 3:将项目上传到tomcat的webaap目录下 4:配置tomcat的conf目录下的server.xml文件 确保8 ...

  9. Oracle锁处理、解锁方法

    1.查询锁情况 select sid,serial#,event,BLOCKING_SESSION from v$session where event like '%TX%'; 2.根据SID查询具 ...

  10. sql for xml path 处理

    1.将下列结果集 做成 aa   语文,数学 bb    英语,语文 这种格式 使用 for xml  path  记得去重复 WITH cte AS(SELECT stu.studentname,c ...