【LG5017】[NOIP2018pj]摆渡车

题面

洛谷

题解

震惊!普及组竟然考斜率优化???

当然有其他的方法

首先我们转化一下模型

此题可以变为:

在一根时间轴上有一些点,每个时间点\(i\)有一个权值\(c_i\)(即在\(i\)开始等待人数,没有则为\(0\))

要求选一些时间点,每个时间点间隔不小于\(m\)

使得每个点的权值乘上它与第一个大于等于它时间的已选择的时间点到它的距离之和最小 感觉讲得好复杂

设\(dp[i]\)表示当我们强制选时间点\(i\)的最小值

则有转移方程\(dp[i]=\min{dp[j]+\sum_{k=j+1}^i{(i-k)*c_k}}\) \((\)\(0\)\(\leq\)\(j\)\(\leq\)\(i-m\)\()\)

次数直接转移的复杂度为\(O(n^3)\)

考虑怎么优化,设

\(sum1[i]=\sum_{j=0}^i{c_j}\)

\(sum2[i]=\sum_{j=0}^i{c_j*j}\)

然后方程化为\(dp[i]=\min dp[j]+i*sum1[i]-i*sum1[j]-sum2[i]+sum2[j]\) \((\)\(0\)\(\leq\)\(j\)\(\leq\)\(i-m\)\()\)

此时复杂度为\(O(n^2)\)

继续优化,此时用上斜率优化

去掉\(min\),则

\(dp[i]=dp[j]+i*sum1[i]-i*sum1[j]-sum2[i]+sum2[j]\)

移项得\(dp[j]+sum2[j]=i*sum1[j]+dp[i]-i*sum1[j]+sum2[i]\)

将\(dp[j]+sum2[j]\)视为\(y\)

将\(i\)视为\(k\)

将\(sum1[j]\)视为\(x\)

队列优化下凸壳即可

复杂度\(O(n)\)

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <climits>
using namespace std;
#define MAX_T 4100000
int N, M, c[MAX_T];
int maxt, sum1[MAX_T], sum2[MAX_T];
int dp[MAX_T], q[MAX_T];
#define y(i) (dp[i] + sum2[i])
#define k(i) (i)
#define x(i) (sum1[i])
int main() {
cin >> N >> M;
for (int t, i = 1; i <= N; i++) cin >> t, c[t]++, maxt = max(maxt, t);
sum1[0] = c[0], sum2[0] = 0;
for (int i = 1; i < maxt + M; i++) {
sum1[i] = sum1[i - 1] + c[i];
sum2[i] = sum2[i - 1] + i * c[i];
}
int ans = INT_MAX;
int l = 1, r = 0;
for (int i = 0; i < maxt + M; i++) {
if (i - M >= 0) {
while (l < r && 1ll * (y(q[r]) - y(q[r - 1])) * (x(i - M) - x(q[r])) >=
1ll * (y(i - M) - y(q[r])) * (x(q[r]) - x(q[r - 1]))) -- r;
q[++r] = i - M;
}
while (l < r && 1ll * (y(q[l + 1]) - y(q[l])) <=
1ll * k(i) * (x(q[l + 1]) - x(q[l]))) ++l;
dp[i] = i * sum1[i] - sum2[i];
int j = q[l]; if (l <= r) dp[i] = min(dp[i], dp[j] + i * sum1[i] - i * sum1[j] - sum2[i] + sum2[j]);
}
for (int i = maxt; i < maxt + M; i++) ans = min(ans, dp[i]);
cout << ans << endl;
return 0;
}

【LG5017】[NOIP2018pj]摆渡车的更多相关文章

  1. [NOIP2018PJ]摆渡车

    [NOIP2018PJ]摆渡车 luogu mdPJ组这么难,还好考的TG组 先按t排序 设f[i][j]表示前i个人,第i个人等j分钟的最小总等待时间 这里j是小于2m的 可以考虑最坏情况下,一个人 ...

  2. [NOIP2018]摆渡车

    Description: 有 n 名同学要乘坐摆渡车从人大附中前往人民大学,第 i位同学在第 t 分钟去 等车.只有一辆摆渡车在工作,但摆渡车容量可以视为无限大.摆渡车从人大附中出发. 把车上的同学送 ...

  3. 【NOIP2018pj】题解

    [NOIP2018pj]题解 \(T1\) 题面 洛谷 题解 好像并没有什么好说的... #include <iostream> #include <cstdio> #incl ...

  4. 【LG5018】[NOIP2018pj]对称的二叉树

    [LG5018][NOIP2018pj]对称的二叉树 题面 洛谷 题解 看到这一题全都是用\(O(nlogn)\)的算法过的 考场上写\(O(n)\)算法的我很不开心 然后就发了此篇题解... 首先我 ...

  5. [NOIP2018PJ]对称二叉树

    [NOIP2018PJ]对称二叉树 这个题正常人看到题面难道不是哈希? 乱写了个树哈希... #include<bits/stdc++.h> using namespace std; co ...

  6. Luogu 5017 NOIP2018普及组T3 摆渡车 (斜率优化 + 必要的转移进行剪枝)

    题意: 有 n 名同学要乘坐摆渡车从人大附中前往人民大学,第 i 位同学在第 ti​ 分钟去 等车.只有一辆摆渡车在工作,但摆渡车容量可以视为无限大.摆渡车从人大附中出发. 把车上的同学送到人民大学. ...

  7. 『摆渡车 斜率优化dp及总结』

    摆渡车的题解我已经写过一遍了,在这里,这次主要从斜率优化的角度讲一下摆渡车,并总结一下斜率优化会出现的一些奇奇怪怪的错误. 摆渡车 Description 有 n 名同学要乘坐摆渡车从人大附中前往人民 ...

  8. [Noip 2018][标题统计 龙湖斗 摆渡车 对称二叉树]普及组题解

    啊喂,都已经9102年了,你还在想去年? 这里是一个Noip2018年PJ第二题打爆的OIer,错失省一 但经过了一年,我学到了很多,也有了很多朋友,水平也提高了很多,现在回看当时: 今年的Noip ...

  9. P5017 [NOIP2018 普及组] 摆渡车

    P5017 [NOIP2018 普及组] 摆渡车 题目 P5017 思路 将实际问题抽象后,不难发现这是一个 区间 \(DP\) 我们不妨认为时间是一条数轴,每名同学按照到达时刻分别对应数轴上可能重合 ...

随机推荐

  1. Codeforces Round #440 (Div. 2)【A、B、C、E】

    Codeforces Round #440 (Div. 2) codeforces 870 A. Search for Pretty Integers(水题) 题意:给两个数组,求一个最小的数包含两个 ...

  2. webpack中热模块更新

    Hot Module Replacement,热模块更新,很多时候会简写成HMR. "scripts": { "start": "webpack-de ...

  3. python中动态导入模块

    当导入的模块不存在时,就会报ImportError错误,为了避免这种错误可以备选其他的模块或者希望优先使用某个模块或包,可以使用try...except...导入模块或包的方式. 例如: Python ...

  4. PHP导出excel表格

    <?php header('Content-Type: application/force-download'); header("Content-type: text/html; c ...

  5. 利用maven开发springMVC项目(二)——框架配置

    申明:主要内容来源于大神博客(使用IntelliJ IDEA开发SpringMVC网站(二)框架配置),我只是用eclipse自己练习使用,记录下来也只是为了学习使用,没有任何的商业用途,侵权必删. ...

  6. ActiveRecord初始化,可以实现jfinal系统启动完成后,再建立数据库连接

    1.JFinalConfig的afterJFinalStart方法,可以实现系统启动成功后,调用的方法 2.ActiveRecord 多数据源初始化 package com.meiah.common; ...

  7. 维度属性的KeyColumns如果是Integer类型,那么维度表中该列的值不能有为null的

    如果维度属性的 KeyColumns的DataType设置为了Integer类型,那么要注意该维度属性列在数据库中不能有为null的值. 例如下图中我们有维度DIM_Vehcile,其中有个维度属性叫 ...

  8. java 网站源码 六套模版 兼容手机平板PC freemaker 静态引擎 在线编辑模版

    官网 http://www.fhadmin.org/ 系统介绍: 1.网站后台采用主流的 SSM 框架 jsp JSTL,网站后台采用freemaker静态化模版引擎生成html 2.因为是生成的ht ...

  9. iOS文本文件的编码检测

    windows上很多文本未必是用UTF8,所以在iOS上读取的时候,如何得到文件的编码是个问题.网上有很多读取中文的例子,但是那些不够通用.比如说要读取日文,韩文,阿拉伯文等等的时候,就不行了(虽然一 ...

  10. TCP|UDP|Http|Socket

    TCP_IP.Http.Socket的区别 - 计算机网络知识库 iOS-Socket网络通信-框架与API - 简书 CocoaAsyncSocket + Protobuf 处理粘包和拆包问题 - ...