BZOJ4766: 文艺计算姬(Prufer序列)
题面
题解
结,结论题?
答案就是\(n^{m-1}m^{n-1}\)
我们考虑它的\(Prufer\)序列,最后剩下的两个点肯定是一个在左边一个在右边,设左边\(n\)个点,右边\(m\)个点,\(Prufer\)序列中左边的点肯定出现了\(m-1\)次,右边的点出现了\(n-1\)次,那么就是上面那个了
听说这题可以手屠基尔霍夫矩阵做出来
//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define ld long double
#define inline __inline__ __attribute__((always_inline))
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
ll n,m,P;
inline ll mul(R ll x,R ll y){
R ll tmp=x*y-(ll)((ld)x/P*y)*P;
return tmp<0?tmp+P:tmp;
}
ll ksm(R ll x,R ll y){
R ll res=1;
for(;y;y>>=1,x=mul(x,x))(y&1)?res=mul(res,x):0;
return res;
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%lld%lld%lld",&n,&m,&P);
printf("%lld\n",mul(ksm(n,m-1),ksm(m,n-1)));
return 0;
}
BZOJ4766: 文艺计算姬(Prufer序列)的更多相关文章
- bzoj4766 文艺计算姬
Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺术细胞.普通计算机能计算一个带标号完全图的生成树个数, ...
- BZOJ4766:文艺计算姬(矩阵树定理)
Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺术细胞. 普通计算机能计算一个带标号完全图的生成树个数 ...
- [bzoj4766] 文艺计算姬 (矩阵树定理+二分图)
传送门 Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺 术细胞.普通计算机能计算一个带标号完全图的生 ...
- BZOJ.4766.文艺计算姬(Prufer)
题目链接 这是完全二分图,那么在构造Prufer序列时,最后会剩下两个点,两点的边是连接两个集合的,这两个点自然分属两个集合 那么集合A被删了m-1次,每次从n个点中选:B被删了n-1次,每次都可以从 ...
- Bzoj4766: 文艺计算姬(Matrix-tree/prufer)
BZOJ 答案就是 \(n^{m-1}m^{n-1}\) \(prufer\) 证明: \(n\) 中的数字出现 \(m-1\) 次,\(m\) 中出现 \(n-1\) 次,根据 \(prufer\) ...
- [bzoj4766]文艺计算姬——完全二分图生成树个数
Brief Description 求\(K_{n,m}\) Algorithm Design 首先我们有(Matrix Tree)定理,可以暴力生成几组答案,发现一些规律: \[K_{n,m} = ...
- 【BZOJ】4766: 文艺计算姬
[题目]给定两边节点数为n和m的完全二分图,求生成树数取模给定的p.n,m,p<=10^18. [算法]生成树计数(矩阵树定理) [题解]参考自 [bzoj4766]文艺计算姬 by WerKe ...
- 【BZOJ4766】文艺计算姬 [暴力]
文艺计算姬 Time Limit: 1 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description "奋战三星期,造台计算机 ...
- bzoj 4766: 文艺计算姬 -- 快速乘
4766: 文艺计算姬 Time Limit: 1 Sec Memory Limit: 128 MB Description "奋战三星期,造台计算机".小W响应号召,花了三星期 ...
随机推荐
- java 序列化时排除指定属性
java 序列化对象如何排除指定属性呢? java 中序列化对象有多种方式:struts2 ,jackson,json-lib (1)使用struts2 json插件 依赖的jar包:struts2- ...
- 迷你MVVM框架 avalonjs 1.3发布
性能得到大幅改良的avalon1.3发布了. 修复$outer BUG 修复IE6-8下扫描加载Flash资源的OBJECT标签时,遇到它既没有innerHTML也没有getAttributeNode ...
- python's nonlocal
[python's nonlocal] nonlocal是python3.x中新加的关键字,用于引用本作用域外层作用域的名字 参考:http://blog.csdn.net/chain2012/art ...
- Unix高级编程Note3
[Unix高级编程Note3] 1.RECURSIVE锁可以递归,普通锁只会死锁 2.线程安全函数 3.线程私有数据 4.pthread_once 5.线程取消点 6.线程信号 7.pread 8.d ...
- jQuery validator 增加多个模板
今天学了jquery validator 可以增加多个模板,而不用写长长的js代码.废话少说,直接上例子 这段是要添加的模板 上面是把模板部分是要重复增加多个的部分,需独立出来,用textarea标签 ...
- 在Linux(Ubuntu)下安装Arial、Times New Roman等字体
在Linux下做文档.作图的时候,可能需要用到Arial和Times New Roman等字体.但是由于版权问题,Linux一般是不直接提供这些字体的. 注意字体也是有版权的!不过有版权也不代表一定会 ...
- Laravel 配置文件操作方法
1)laravel 的所以配置文件都在根目录下的 config 目录里,直接看一个配置文件的名字就知道是做什么的了,这里不说了 2)读取配置的方法 $value = config('app.timez ...
- linux git server 简易搭建 (ssh访问)
git的服务器搭建,如果无需权限控制,仅团队内部使用,初始化一个服务器仓库,其他人通过ssh访问这个文件夹即可.如需复杂的管理,建议使用gitlab. yum install git -y id gi ...
- centos7 安装mongo
1:创建仓库 vi /etc/yum.repos.d/mongodb-org-3.4.repo 2:把下面的内容复制到文件中 保存退出 [mongodb-org-3.4] name=MongoDB R ...
- Web图片编辑控件开发文档-Xproer.ImageEditor
版权所有 2009-2014 荆门泽优软件有限公司 保留所有权利 官方网站:http://www.ncmem.com 产品首页:http://www.ncmem.com/webplug/image-e ...