The Backpropagation Algorithm
https://page.mi.fu-berlin.de/rojas/neural/chapter/K7.pdf
7.1 Learning as gradient descent We saw in the last chapter that multilayered networks are capable of computing a wider range of Boolean functions than networks with a single layer of computing units. However the computational effort needed for finding the correct combination of weights increases substantially when more parameters and more complicated topologies are considered. In this chapter we discuss a popular learning method capable of handling such large learning problems — the backpropagation algorithm. This numerical method was used by different research communities in different contexts, was discovered and rediscovered, until in 1985 it found its way into connectionist AI mainly through the work of the PDP group [382]. It has been one of the most studied and used algorithms for neural networks learning ever since. In this chapter we present a proof of the backpropagation algorithm based on a graphical approach in which the algorithm reduces to a graph labeling problem. This method is not only more general than the usual analytical derivations, which handle only the case of special network topologies, but also much easier to follow. It also shows how the algorithm can be efficiently implemented in computing systems.
The optimization algorithm repeats a two phase cycle, propagation and weight update. When an input vector is presented to the network, it is propagated forward through the network, layer by layer, until it reaches the output layer. The output of the network is then compared to the desired output, using a loss function. The resulting error value is calculated for each of the neurons in the output layer. The error values are then propagated from the output back through the network, until each neuron has an associated error value that reflects its contribution to the original output. Backpropagation uses these error values to calculate the gradient of the loss function. In the second phas
e, this gradient is fed to the optimization method, which in turn uses it to update the weights, in an attempt to minimize the loss function.
The Backpropagation Algorithm的更多相关文章
- CheeseZH: Stanford University: Machine Learning Ex4:Training Neural Network(Backpropagation Algorithm)
1. Feedforward and cost function; 2.Regularized cost function: 3.Sigmoid gradient The gradient for t ...
- BP反向传播算法的工作原理How the backpropagation algorithm works
In the last chapter we saw how neural networks can learn their weights and biases using the gradient ...
- 反向传播算法 Backpropagation Algorithm
假设我们有一个固定样本集,它包含 个样例.我们可以用批量梯度下降法来求解神经网络.具体来讲,对于单个样例(x,y),其代价函数为:这是一个(二分之一的)方差代价函数.给定一个包含 个样例的数据集,我们 ...
- 神经网络(9)--如何求参数: backpropagation algorithm(反向传播算法)
Backpropagation algorithm(反向传播算法) Θij(l) is a real number. Forward propagation 上图是给出一个training examp ...
- Feedforward and BackPropagation Algorithm
在下图所示的Neural Network中,我们将拥有三个节点的layer1及layer4分别称为输入和输出层,而中间的两层layer2,layer3称为隐藏层(hidden layer).输入数据X ...
- 一文弄懂神经网络中的反向传播法(Backpropagation algorithm)
最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进 ...
- [Converge] Backpropagation Algorithm
Ref: CS231n Winter 2016: Lecture 4: Backpropagation Ref: How to implement a NN:中文翻译版本 Ref: Jacobian矩 ...
- (六) 6.2 Neurons Networks Backpropagation Algorithm
今天得主题是BP算法.大规模的神经网络可以使用batch gradient descent算法求解,也可以使用 stochastic gradient descent 算法,求解的关键问题在于求得每层 ...
- 吴恩达机器学习笔记30-神经网络的反向传播算法(Backpropagation Algorithm)
之前我们在计算神经网络预测结果的时候我们采用了一种正向传播方法,我们从第一层开始正向一层一层进行计算,直到最后一层的ℎ
随机推荐
- 多媒体开发之h264的三种字节流格式---annexb 哥伦布/mp4 以及还有一种rtp传输流格式
------------------------------------author:pkf ------------------------------------------time:2015-1 ...
- enumerate遍历列表
enumerate 函数用于遍历序列中的元素以及它们的下标: >>> for i,j in enumerate(('a','b','c')): print i,j 0 a 1 b ...
- 【复杂】CentOS 6.4下PXE+Kickstart无人值守安装操作系统
一.简介 1.1 什么是PXE PXE(Pre-boot Execution Environment,预启动执行环境)是由Intel公司开发的最新技术,工作于Client/Server的网络模式,支持 ...
- jQuery分页插件(jquery.page.js)的使用
效果描述: 不用分页即可显示的jQuery插件 jQuery分页插件——jQuery.page.js用法很简单,效果很棒 1.前端 首先html的head中引入相关css与js <lin ...
- c++ 转化
atof(将字符串转换成浮点型数)相关函数atoi,atol,strtod,strtol,strtoul表头文件#include定义函数double atof(const char *nptr);函数 ...
- rsync文件同步、Inotify-tools参数详解
inotifywait用于等待文件或文件集上的一个待定事件,可以监控任何文件和目录设置,并且可以递归地监控整个目录树: inotifywatch用于收集被监控的文件系统计数据,包括每个inotify事 ...
- 转:windows 下 netsh 实现 端口映射(端口转发)
本文转自:本文出自 “httpyuntianjxxll.spac..” 博客,请务必保留此出处http://333234.blog.51cto.com/323234/1135361 -----hapr ...
- windows cmd中查看某个命令所在的路径
需求描述: 之前用linux环境下的which命令就能看到某个命令的绝对路径, 然后想在windows下的cmd中是否也能够查看到命令的绝对路径呢 操作过程: 1.windows环境下,通过where ...
- 用cocos2d 2.1制作一个过河小游戏(4): 游戏主逻辑BaseLayer设计
前段时间一直在忙.没有时间更新博客.今天还是抽点时间把最后一小部分游戏的实现放上来吧. BaseLayer.h: #import <GameKit/GameKit.h> #import & ...
- 在map中一个key中存多个值
一说到map都想到key-value键值队存在.key可以为最多一个null的key. 今天开发中一个业务需求,在map中一个key中存多个对象. 我首先想到Map<String,List> ...