Machine Learning笔记整理 ------ (一)基本概念
机器学习的定义:假设用P来评估计算机程序在某任务类T上的性能,若一个程序通过利用经验E,使其在T中任务获得了性能改善,我们则说关于任务类T和P,该程序对经验E进行了学习(Mitchell, 1997)。
机器学习的研究内容:关于在计算机上从数据中产生模型的算法,即学习算法(learning algorithm)。
1.名词定义
数据集 (Data set):数据的集合,其中每条数据都称为一条样本 (Sample)或示例 (Instance)。即:
样本 (Sample) = 示例 (Instance)
属性 (Attribute) = 特征 (Feature)
属性空间 (Attribute space) = 样本空间 (Sample space) = 输入空间 (Input space)
E.g. 如图所示,若某数据集中的数据拥有三种属性,则可以看作是三维空间内对应坐标的点。而该坐标张成的空间即为属性空间。

即:数据集 D = {x1, x2, ......, xm}, 其中,样本 x = {x11, x22, ......, x1d},d为该条数据的维数(属性或特征的个数),xij 则是第 i 条数据中第 j 条属性或特征的值。
学习 (Learning) / 训练 (Training):从数据中学得模型的过程。
训练数据 (Training data):训练过程中使用的数据,其中的每个样本称为一个训练样本。
训练集 (Training set):训练样本所组成的集合。
标记 (Label):关于样本结果的信息。
样例 (Example):拥有标记的样本/示例即样例。即:
示例 (Instance) / 样本 (Sample) + 标记 (Label) = 样例 (Example)
(xi, yi)

测试 (Testing):使用学得的模型进行预测的过程。
测试集 (Testing Set):测试样本所组成的集合,应尽量与训练集互斥。
泛化 (Generalization):学得的模型适用于新样本的能力。
独立同分布 (Independent and identically distributed, i.i.d):假设样本空间中的全体样本服从一个未知的分布D,我们获得的每个样本都是独立地从这个分布上采样获得的,这也是统计机器学习算法的基本依据。
奥卡姆剃刀 (Occam's razor):如果有多个假设与观察一致,则选取最简单的那个。
“没有免费的午餐”定理(No Free Lunch Theorem, NFL):无论学习算法 Σa 多聪明,学习算法Σb多笨拙,它们的期望性能是相同的。
2. 分类、回归
根据预测任务中预测的值类型的不同:

根据是否拥有标记 (Label):

Machine Learning笔记整理 ------ (一)基本概念的更多相关文章
- Machine Learning笔记整理 ------ (五)决策树、随机森林
1. 决策树 一般的,一棵决策树包含一个根结点.若干内部结点和若干叶子结点,叶子节点对应决策结果,其他每个结点对应一个属性测试,每个结点包含的样本集合根据属性测试结果被划分到子结点中,而根结点包含样本 ...
- Machine Learning笔记整理 ------ (四)线性模型
1. 线性模型 基本形式:给定由d个属性描述的样本 x = (x1; x2; ......; xd),其中,xi是x在第i个属性上的取值,则有: f(x) = w1x1 + w2x2 + ...... ...
- Machine Learning笔记整理 ------ (三)基本性能度量
1. 均方误差,错误率,精度 给定样例集 (Example set): D = {(x1, y1), (x2, y2), (x3, y3), ......, (xm, ym)} 其中xi是对应属性的值 ...
- Machine Learning笔记整理 ------ (二)训练集与测试集的划分
在实际应用中,一般会选择将数据集划分为训练集(training set).验证集(validation set)和测试集(testing set).其中,训练集用于训练模型,验证集用于调参.算法选择等 ...
- 【Machine Learning】机器学习及其基础概念简介
机器学习及其基础概念简介 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...
- 第五周(web,machine learning笔记)
2019/11/2 1. 表现层状态转换(REST, representational state transfer.)一种万维网软件架构风格,目的是便于不同软件/程序在网络(例如互联网)中互相 ...
- machine learning 笔记 normal equation
theta=(Xt*X)^-1 Xt*y x is feature matrix y is expectation
- 【Machine Learning】KNN算法虹膜图片识别
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...
- 【Machine Learning】Python开发工具:Anaconda+Sublime
Python开发工具:Anaconda+Sublime 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现 ...
随机推荐
- 【JavaScript-基础-文件上传】
Upload 最原始方式 form表单提交 // html <form method="get" action="/test/upload"> &l ...
- 关于 web.config impersonate 帐号模拟
1.模拟 IIS 验证的帐户或用户 若要在收到 ASP.NET 应用程序中每个页的每个请求时模拟 Microsoft Internet 信息服务 (IIS) 身份验证用户,必须在此应用程序的 Web. ...
- Redis之Redis事务
Redis事务的概念: Redis 事务的本质是一组命令的集合.事务支持一次执行多个命令,一个事务中所有命令都会被序列化.在事务执行过程,会按照顺序串行化执行队列中的命令,其他客户端提交的命令请求不会 ...
- Redis 之复制-初入江湖
一.前言 在分布式系统中,为了解决单点问题,通常会把数据复制多个副本部署到其他机器,满足故障恢复合负载均衡等需求.Redis也是如此,它为我们提供了复制的功能,实现了相同数据的多个Redis副本.复制 ...
- CentOS6安装各种大数据软件 第一章:各个软件版本介绍
相关文章链接 CentOS6安装各种大数据软件 第一章:各个软件版本介绍 CentOS6安装各种大数据软件 第二章:Linux各个软件启动命令 CentOS6安装各种大数据软件 第三章:Linux基础 ...
- P2P借款人信用风险实时监控模型设计
P2P借款人信用风险实时监控模型设计 P2P网络贷款(“peer-to-peer”)为中小企业和个人提供了便利的融资渠道.近年来,随着互联网金融的逐步发展,P2P网贷已成为时下炙手可热的互联网金融新模 ...
- Linux下C语言编译的问题
在Linux下编程发现一个诡异的现象,就是在链接一个静态库的时候总是报错,类似下面这样的错误: (.text+0x13): undefined reference to `func' 关于undefi ...
- 欧几里得算法/欧几里得扩展算法-python
说在开头. 出于对欧几里得的尊重,先简单介(cou)绍(ge)一(zi)下(shu).. 欧几里得,古希腊人,数学家.他活跃于托勒密一世时期的亚历山大里亚,被称为“几何之父”. 他最著名的著作< ...
- markupsafe._compat出错的解决办法
在windows下用pip进行安装的flask和freeze会在运行程序的时候出现报错 markupsafe._compat出错,那么此时找到对应的pip文件夹下自己创建一个_compat.py 然后 ...
- 20155239 《Java程序设计》实验三(敏捷开发与XP实践)实验报告
实验三 敏捷开发与XP实践 实验内容 XP基础 XP核心实践 学会使用git 学会代码的重构 实现团队合作 团队分工 20155239:按照老师的实验三教程,逐步实验,编写代码,并用git上传,下载团 ...