C. Rational Resistance
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Mad scientist Mike is building a time machine in his spare time. To finish the work, he needs a resistor with a certain resistance value.

However, all Mike has is lots of identical resistors with unit resistance R0 = 1. Elements with other resistance can be constructed from these resistors. In this problem, we will consider the following as elements:

  1. one resistor;
  2. an element and one resistor plugged in sequence;
  3. an element and one resistor plugged in parallel.

With the consecutive connection the resistance of the new element equals R = Re + R0. With the parallel connection the resistance of the new element equals . In this case Re equals the resistance of the element being connected.

Mike needs to assemble an element with a resistance equal to the fraction . Determine the smallest possible number of resistors he needs to make such an element.

Input

The single input line contains two space-separated integers a and b (1 ≤ a, b ≤ 1018). It is guaranteed that the fraction  is irreducible. It is guaranteed that a solution always exists.

Output

Print a single number — the answer to the problem.

Please do not use the %lld specifier to read or write 64-bit integers in С++. It is recommended to use the cin, cout streams or the%I64d specifier.

Examples
input
1 1
output
1
input
3 2
output
3
input
199 200
output
200
Note

In the first sample, one resistor is enough.

In the second sample one can connect the resistors in parallel, take the resulting element and connect it to a third resistor consecutively. Then, we get an element with resistance . We cannot make this element using two resistors.

题意:要得到a/b的电阻最小需要多少个电阻;(注意:每次只能串联一个或者并联一个);

思路:每次串联一个得到(a+b)/a,并联一个得到a/(a+b);

#include<bits/stdc++.h>
using namespace std;
#define ll __int64
#define mod 1000000007
#define inf 100000000000005
#define MAXN 10000010
//#pragma comment(linker, "/STACK:102400000,102400000")
int main()
{
ll x,y,z,i,t;
scanf("%I64d%I64d",&x,&y);
ll ans=;
while()
{
if(x>y)
{
ans+=x/y;
x%=y;
if(x==)
break;
}
else if(x<y)
{
z=x;
x=y-x;
y=z;
ans++;
}
else
{
ans+=;
break;
}
}
cout<<ans<<endl;
return ;
}

codeforces 200 div2 C. Rational Resistance 思路题的更多相关文章

  1. Bakery CodeForces - 707B (最短路的思路题)

    Masha wants to open her own bakery and bake muffins in one of the n cities numbered from 1 to n. The ...

  2. Codeforces Round #200 (Div. 1)A. Rational Resistance 数学

    A. Rational Resistance Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/343 ...

  3. Codeforces Round #200 (Div. 2) C. Rational Resistance

    C. Rational Resistance time limit per test 1 second memory limit per test 256 megabytes input standa ...

  4. CodeForces Round 200 Div2

    这次比赛出的题真是前所未有的水!只用了一小时零十分钟就过了前4道题,不过E题还是没有在比赛时做出来,今天上午我又把E题做了一遍,发现其实也很水.昨天晚上人品爆发,居然排到Rank 55,运气好的话没准 ...

  5. codeforces #262 DIV2 B题 Little Dima and Equation

    题目地址:http://codeforces.com/contest/460/problem/B 这题乍一看没思路.可是细致分析下会发现,s(x)是一个从1到81的数,不管x是多少.所以能够枚举1到8 ...

  6. codeforces343A A. Rational Resistance

    http://http://codeforces.com/problemset/problem/343/A A. Rational Resistance time limit per test 1 s ...

  7. Codeforces #541 (Div2) - E. String Multiplication(动态规划)

    Problem   Codeforces #541 (Div2) - E. String Multiplication Time Limit: 2000 mSec Problem Descriptio ...

  8. Codeforces #180 div2 C Parity Game

    // Codeforces #180 div2 C Parity Game // // 这个问题的意思被摄物体没有解释 // // 这个主题是如此的狠一点(对我来说,),不多说了这 // // 解决问 ...

  9. Codeforces #541 (Div2) - F. Asya And Kittens(并查集+链表)

    Problem   Codeforces #541 (Div2) - F. Asya And Kittens Time Limit: 2000 mSec Problem Description Inp ...

随机推荐

  1. 【BZOJ1915】[Usaco2010 Open]奶牛的跳格子游戏 DP+单调队列

    [BZOJ1915][Usaco2010 Open]奶牛的跳格子游戏 Description 奶牛们正在回味童年,玩一个类似跳格子的游戏,在这个游戏里,奶牛们在草地上画了一行N个格子,(3 <= ...

  2. ionic+cordova开发!

    这里是一些学习的过程中纪录的: 官方网站: http://www.ionic-china.com/ 参考文章: https://blog.csdn.net/xyzz609/article/detail ...

  3. Java.lang的研究(分析包含的重要类和接口)

    Java.lang包是Java中使用最广泛的一个包,它包含很多定义的类和接口. java.lang包包括以下这些类: Boolean Byte Character Class ClassLoader ...

  4. 理解 php new static

    今天在看 Laravel 的容器(Container)实现时,发现了这么一段突然不能理解的代码: ** * Set the globally available instance of the con ...

  5. .net各版本framework官方下载地址

    版本 链接 说明 Microsoft .NET Framework 4(独立安装程序) https://www.microsoft.com/zh-cn/download/details.aspx?id ...

  6. Python开发【Django】:基础

    Django基本配置 Python的WEB框架有Django.Tornado.Flask 等多种,Django相较与其他WEB框架其优势为:大而全,框架本身集成了ORM.模型绑定.模板引擎.缓存.Se ...

  7. Python isdigit() isalnum()

    Python isdigit() 方法检测字符串是否只由数字组成. 返回值 如果字符串只包含数字则返回 True 否则返回 False. >>> choice = input(&qu ...

  8. git-【二】本地git操作提交、版本回退

    一.创建版本库,提交文件 什么是版本库?版本库又名仓库,英文名repository,你可以简单的理解一个目录,这个目录里面的所有文件都可以被Git管理起来,每个文件的修改,删除,Git都能跟踪,以便任 ...

  9. (转)Terraform,自动化配置与编排必备利器

    本文来自作者 QingCloud实践课堂 在 GitChat 上分享 「Terraform,自动化配置与编排必备利器」 Terraform - Infrastructure as Code 什么是 T ...

  10. (2)R中的数据类型和数据结构

    R中的数据结构主要面向<线性代数>中的一些概念,如向量.矩阵等.值得注意的是,R中其实没有简单数据(数值型.逻辑型.字符型等),对于简单类型会自动看做长度为1的向量.比如: > b= ...