【BZOJ1717】[Usaco2006 Dec]Milk Patterns 产奶的模式 后缀数组
【BZOJ1717】[Usaco2006 Dec]Milk Patterns
Description
农夫John发现他的奶牛产奶的质量一直在变动。经过细致的调查,他发现:虽然他不能预见明天产奶的质量,但连续的若干天的质量有很多重叠。我们称之为一个“模式”。 John的牛奶按质量可以被赋予一个0到1000000之间的数。并且John记录了N(1<=N<=20000)天的牛奶质量值。他想知道最长的出现了至少K(2<=K<=N)次的模式的长度。比如1 2 3 2 3 2 3 1 中 2 3 2 3出现了两次。当K=2时,这个长度为4。
Input
* Line 1: 两个整数 N,K。
* Lines 2..N+1: 每行一个整数表示当天的质量值。
Output
* Line 1: 一个整数:N天中最长的出现了至少K次的模式的长度
Sample Input
1
2
3
2
3
2
3
1
Sample Output
题解:论文中的例题。
由于数的范围比较大,直接上基数排序会炸,所以本题可以用快排来搞,(但是我没写出来快排233),好吧于是我就先离散化,然后再用基数排序做的。
先二分答案,将height分成长度不小于ans的若干组,如果某一组的后缀个数不小于k,那么存在满足条件的长度为ans的子串。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn=20010;
int n,m,K;
int ra[maxn],rb[maxn],r[maxn],sa[maxn],st[maxn],rank[maxn],h[maxn];
struct node
{
int num,org;
}v[maxn];
bool cmp(node a,node b)
{
return a.num<b.num;
}
int readin()
{
int ret=0; char gc;
while(gc<'0'||gc>'9') gc=getchar();
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret;
}
void work()
{
int i,j,k,p,*x=ra,*y=rb;
for(i=0;i<n;i++) st[x[i]=r[i]]++;
for(i=1;i<m;i++) st[i]+=st[i-1];
for(i=n-1;i>=0;i--) sa[--st[x[i]]]=i;
for(j=p=1;p<n;j<<=1,m=p)
{
for(p=0,i=n-j;i<n;i++) y[p++]=i;
for(i=0;i<n;i++) if(sa[i]>=j) y[p++]=sa[i]-j;
for(i=0;i<m;i++) st[i]=0;
for(i=0;i<n;i++) st[x[y[i]]]++;
for(i=1;i<m;i++) st[i]+=st[i-1];
for(i=n-1;i>=0;i--) sa[--st[x[y[i]]]]=y[i];
for(swap(x,y),p=1,i=1,x[sa[0]]=0;i<n;i++)
x[sa[i]]=(y[sa[i-1]]==y[sa[i]]&&y[sa[i-1]+j]==y[sa[i]+j])?p-1:p++;
}
for(i=1;i<n;i++) rank[sa[i]]=i;
for(i=k=0;i<n-1;h[rank[i++]]=k)
for(k?k--:0,j=sa[rank[i]-1];r[i+k]==r[j+k];k++);
}
int solve(int sta)
{
int i,tot=1;
for(i=1;i<n;i++)
{
if(h[i]<sta) tot=0;
if(++tot>=K) return 1;
}
return 0;
}
int main()
{
n=readin(),K=readin();
int i;
for(i=0;i<n;i++) v[i].num=readin(),v[i].org=i;
sort(v,v+n,cmp);
int pre=-1,now=0;
for(i=0;i<n;i++)
{
if(v[i].num>pre) pre=v[i].num,now++;
r[v[i].org]=now;
}
r[n++]=0;
m=n;
work();
int L=1,R=n-1,mid;
while(L<R)
{
mid=L+R>>1;
if(solve(mid)) L=mid+1;
else R=mid;
}
printf("%d",L-1);
return 0;
}
【BZOJ1717】[Usaco2006 Dec]Milk Patterns 产奶的模式 后缀数组的更多相关文章
- bzoj1717: [Usaco2006 Dec]Milk Patterns 产奶的模式(后缀数组+二分)
/* 求可重叠的至少重复K次的最长字串 以1为下标起点,因为a[i]最大到1000000,所以要先离散一下 二分长度len 然后O(n)检验 后看h[i]是否有连续的一段h[i]大于len的,并且h[ ...
- [bzoj1717][Usaco2006 Dec]Milk Patterns 产奶的模式——后缀数组
Brief Description 给定一个字符串,求至少出现k次的最长重复子串. Algorithm Design 先二分答案,然后将后缀分成若干组.判断有没有一个组的后缀个数不小于k.如果有,那么 ...
- BZOJ 1717: [Usaco2006 Dec]Milk Patterns 产奶的模式 [后缀数组]
1717: [Usaco2006 Dec]Milk Patterns 产奶的模式 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1017 Solved: ...
- 【bzoj1717】[Usaco2006 Dec]Milk Patterns 产奶的模式 后缀数组+离散化
题目描述 农夫John发现他的奶牛产奶的质量一直在变动.经过细致的调查,他发现:虽然他不能预见明天产奶的质量,但连续的若干天的质量有很多重叠.我们称之为一个“模式”. John的牛奶按质量可以被赋予一 ...
- bzoj1717: [Usaco2006 Dec]Milk Patterns 产奶的模式
后缀数组+二分答案+离散化.(上次写的时候看数据小没离散化然后一直WA...写了lsj师兄的写法. #include<cstdio> #include<cstring> #in ...
- [bzoj1717][Usaco2006 Dec]Milk Patterns 产奶的模式_后缀数组_二分答案
Milk Patterns 产奶的模式 bzoj-1717 Usaco-2006 Dec 题目大意:给定一个字符串,求最长的至少出现了$k$次的子串长度. 注释:$1\le n\le 2\cdot 1 ...
- [bzoj1717][Usaco2006 Dec]Milk Patterns 产奶的模式 (hash构造后缀数组,二分答案)
以后似乎终于不用去学后缀数组的倍增搞法||DC3等blablaSXBK的方法了= = 定义(来自关于后缀数组的那篇国家集训队论文..) 后缀数组:后缀数组SA是一个一维数组,它保存1..n的某个排列S ...
- BZOJ 1717: [Usaco2006 Dec]Milk Patterns 产奶的模式( 二分答案 + 后缀数组 )
二分答案m, 后缀数组求出height数组后分组来判断. ------------------------------------------------------------ #include&l ...
- BZOJ#1717:[Usaco2006 Dec]Milk Patterns 产奶的模式(后缀数组+单调队列)
1717: [Usaco2006 Dec]Milk Patterns 产奶的模式 Description 农夫John发现他的奶牛产奶的质量一直在变动.经过细致的调查,他发现:虽然他不能预见明天产奶的 ...
随机推荐
- Hibernate- QBC-基本查询
01.环境搭建 02.基本查询 1.方法说明 方法 说明 Restrictions.eq = Restrictions.allEq 利用Map来进行多个等于的限制 Restrictions.gt &g ...
- AT command常用中文简解
1.常用操作1.1 AT命令解释:检测 Module 与串口是否连通,能否接收 AT 命令:命令格式:AT<CR>命令返回:OK (与串口通信正常) (无返回,与串 ...
- js学习笔记10----字符串的基本操作
1.字符串的基本操作如下: 定义字符串: var str = "Hello World!" 字符串的基本操作如下: str.length-----返回字符串长度,这里返回12 st ...
- absolute绝对定位的非绝对定位用法
总结: position为absolute的元素如果没有设置left, top等值与left:0;top:0;的的效果是不一样的.例如一个div中有个absolute属性元素,其没有left或是top ...
- 另外一款超棒的响应式布局jQuery插件 – Freetile.js
在线演示 我们曾经介绍过俩款知名的响应式布局插:isotope和masonary,今天我们这里再介绍一款相当不错的响应式布局插件 – Freetile.js,使用它同样可以生成超酷的动态布局效果.相信 ...
- Spring 4 官方文档学习(七)核心技术之Spring AOP APIs
请忽略本篇内容!!! 1.介绍 2.Spring中的pointcut API 2.1.概念 2.2.对pointcut的操作 2.3. AspectJ expression pointcut 2.4. ...
- Spring in Action 4th 学习笔记
约定: 一.@Xxx Class 表示被@Xxx注解的类.同理还有@Xxx注解的字段或方法. 例如:@Bean Method. 二.@Component Class 同时代指 @Controller. ...
- IoC就是IoC,不是什么技术,与GoF一样,是一种 设计模式。
IoC就是IoC,不是什么技术,与GoF一样,是一种 设计模式. Interface Driven Design接口驱动,接口驱动有很多好处,可以提供不同灵活的子类实现,增加代码稳定和健壮性等等,但是 ...
- 为什么要整合apache 和tomcat?
1. Apache是web服务器,Tomcat是应用(java)服务器,它只是一个servlet容器,是Apache的扩展. 2. Apache和Tomcat都可以做为独立的web服务器来运行,但是A ...
- 搞笑的<Button></Button>
<button>竟然默认是submit按钮</button>.........................