【BZOJ3935】Rbtree

Description

给定一颗 N 个点的树,树上的每个点或者是红色,或者是黑色。
每个单位时间内,你可以任选两个点,交换它们的颜色。
出于某种恶趣味,你希望用最少的时间调整结点的颜色,使得对于每个点,离它最近的黑色点与它的距离不超过 x。

Input

输入的第一行包含整数 N 和 x(1 <= x <= 10^9)。
接下来一行 N 个整数 C1-Cn,表示结点的初始颜色。1 表示黑色,0 表示红色。
接下来 N-1 行,每行 3 个整数 ui, vi,wi(1 <= wi <= 10^9),表示点 ui 和 vi 之间存在权值为 wi的边。

Output

输出一个数表示答案;如果无解,输出 “-1”。

Sample Input

3 2
1 0 0
1 2 2
2 3 2

Sample Output

1

HINT

数据规模和约定
对于100%的数据 N<=500

题解:大神们写的都是单纯形?算了我只知道树形DP。

本题的思路和小奇挖矿相同。用f[x][a][b]表示在x的子树中放a个黑点,且距离x最近的黑点是b的最小花费(即有多少点从白点变成黑点)。转移时,对于a那维相当于树形背包,我们考虑b那维怎么转移。

如果我们想用f[y][..][c]来更新f[x][..][b],那么讨论:如果b==c,直接转移即可;如果c在y的子树中,那么用f[y][..][c]的最大值来更新f[x][..][b]即可;如果c不在y的子树中,那么我们将b换成c或者将c换成b一定不会变的更差,所以:不用转移!

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long ll;
int n,m,ans,cnt;
ll K;
int v[505],p[505],q[505],Q[505],siz[505],g[505][505],to[1010],next[1010],head[505];
int f[505][505][505];
ll dis[505][505],val[1010];
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+(gc^'0'),gc=getchar();
return ret*f;
}
inline void add(int a,int b,int c)
{
to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++;
}
void dfs1(int x,int fa,int y)
{
if(y==1) p[x]=++p[0],Q[p[0]]=x;
for(int i=head[x];i!=-1;i=next[i]) if(to[i]!=fa) dis[to[i]][y]=dis[x][y]+val[i],dfs1(to[i],x,y);
if(y==1) q[x]=p[0];
}
void dfs2(int x,int fa)
{
int i,y,j,k,a,mn;
siz[x]=1;
for(a=1;a<=n;a++) if(a!=x&&dis[a][x]<=K) f[x][0][a]=0;
f[x][1][x]=!v[x];
for(i=head[x];i!=-1;i=next[i]) if(to[i]!=fa)
{
y=to[i],dfs2(y,x);
memset(g,0x3f,sizeof(g));
for(j=0;j<=siz[x]&&j<=m;j++) for(k=0;k<=siz[y]&&j+k<=m;k++)
{
mn=0x3f3f3f3f;
for(a=p[y];a<=q[y];a++) mn=min(mn,f[y][k][Q[a]]);
for(a=1;a<=n;a++) g[j+k][a]=min(g[j+k][a],f[x][j][a]+f[y][k][a]);
for(a=1;a<p[y];a++) g[j+k][Q[a]]=min(g[j+k][Q[a]],f[x][j][Q[a]]+mn);
for(a=q[y]+1;a<=n;a++) g[j+k][Q[a]]=min(g[j+k][Q[a]],f[x][j][Q[a]]+mn);
}
siz[x]+=siz[y];
for(j=0;j<=siz[x]&&j<=m;j++) for(a=1;a<=n;a++) f[x][j][a]=g[j][a];
}
}
int main()
{
n=rd(),K=rd();
int i,a,b,c;
memset(head,-1,sizeof(head));
for(i=1;i<=n;i++) v[i]=rd(),m+=v[i];
for(i=1;i<n;i++) a=rd(),b=rd(),c=rd(),add(a,b,c),add(b,a,c);
for(i=1;i<=n;i++) dfs1(i,0,i);
memset(f,0x3f,sizeof(f));
dfs2(1,0);
ans=1<<30;
for(i=1;i<=n;i++) ans=min(ans,f[1][m][i]);
printf("%d",ans>n?-1:ans);
return 0;
}

【BZOJ3935】Rbtree 树形DP的更多相关文章

  1. poj3417 LCA + 树形dp

    Network Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4478   Accepted: 1292 Descripti ...

  2. COGS 2532. [HZOI 2016]树之美 树形dp

    可以发现这道题的数据范围有些奇怪,为毛n辣么大,而k只有10 我们从树形dp的角度来考虑这个问题. 如果我们设f[x][k]表示与x距离为k的点的数量,那么我们可以O(1)回答一个询问 可是这样的话d ...

  3. 【BZOJ-4726】Sabota? 树形DP

    4726: [POI2017]Sabota? Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 128  Solved ...

  4. 树形DP+DFS序+树状数组 HDOJ 5293 Tree chain problem(树链问题)

    题目链接 题意: 有n个点的一棵树.其中树上有m条已知的链,每条链有一个权值.从中选出任意个不相交的链使得链的权值和最大. 思路: 树形DP.设dp[i]表示i的子树下的最优权值和,sum[i]表示不 ...

  5. 树形DP

    切题ing!!!!! HDU  2196 Anniversary party 经典树形DP,以前写的太搓了,终于学会简单写法了.... #include <iostream> #inclu ...

  6. BZOJ 2286 消耗战 (虚树+树形DP)

    给出一个n节点的无向树,每条边都有一个边权,给出m个询问,每个询问询问ki个点,问切掉一些边后使得这些顶点无法与顶点1连接.最少的边权和是多少.(n<=250000,sigma(ki)<= ...

  7. POJ2342 树形dp

    原题:http://poj.org/problem?id=2342 树形dp入门题. 我们让dp[i][0]表示第i个人不去,dp[i][1]表示第i个人去 ,根据题意我们可以很容易的得到如下递推公式 ...

  8. hdu1561 The more, The Better (树形dp+背包)

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1561 思路:树形dp+01背包 //看注释可以懂 用vector建树更简单. 代码: #i ...

  9. bzoj2500: 幸福的道路(树形dp+单调队列)

    好题.. 先找出每个节点的树上最长路 由树形DP完成 节点x,设其最长路的子节点为y 对于y的最长路,有向上和向下两种情况: down:y向子节点的最长路g[y][0] up:x的次长路的g[x][1 ...

随机推荐

  1. 记录日志框架:log4net使用

    一.log4net简介 Log4net是Apache下一个开放源码的项目,我们可以控制日志信息的输出目的地.Log4net中定义了多种日志信息输出模式.在做项目的时候最头疼的是在程序发布到正式环境之后 ...

  2. ubuntu/centos网络配置

    UBUNTU网络配置 配置临时的Ip ifconfig eth0 其中24指的网络掩码24位. vim /etc/network/interfaces 添加下面内容 auto eth0 #开机自动连接 ...

  3. 象“[]”、“.”、“->”这类操作符前后不加空格

    象“[]”.“.”.“->”这类操作符前后不加空格. #include <iostream> #include <process.h> #include<stdio ...

  4. gen_server的一些猜测

    1. exit(Pid,Reason)貌似不会引起gen_server的terminate()的执行. 猜测依据:erlang编程指南的第十二章的272页 终止   当从 回调函数中的一个收到stop ...

  5. PHP利用memcache缓存技术提高响应速度

    PHP下memcache模块是一个高效的守护进程,提供用于内存缓存的过程式程序和面向对象的方便的接口,特别是对于设计动态web程序时减少对数据库的访问.memcache也提供用于通信对话(sessio ...

  6. Kubernetes(一)初探

    Kubernetes是Google开源的容器集群管理系统.它构建于docker技术之上,为容器化的应用提供资源调度.部署运行.服务发现.扩容缩容等整一套功能,本质上可看作是基于容器技术的mini-Pa ...

  7. jpa动态分页查找

    https://my.oschina.net/buwei/blog/172402 http://www.cnblogs.com/derry9005/p/6282571.html http://2560 ...

  8. Windows下配置Apache+PHP跑Wordpress拾遗

    首先,我很少这么做,因为一旦有跑WAMP的需求,我就直接下一个wamp的安装包就可以了,市面上数不胜数,我一直用的是EasyPHP,不是说它有多好,而是很多年前第一次用后没什么问题,就一直用下来了.这 ...

  9. jquery把int类型转换成字符串类型的方法

    jQuery中把获取的number类型数据转换成字符串类型 var val=$(“#id).val(); If(typeof val==”number”){ val+=' '; }

  10. oracle 无效索引

    错误信息:ORA-01502: index 'VOX_ID' or partition of such index is in unusable state 原因:将表的表空间做了更改,导致索引失效. ...