每日 mark
SIGNAL=${SIGNAL:-TERM}
PIDS=$(jps -lm | grep -i 'kafka\.Kafka' | awk '{print $1}')
if [ -z "$PIDS" ]; then
echo "No kafka server to stop"
exit 1
else
kill -s $SIGNAL $PIDS
fi
PIDS=$(ps ax | grep -i 'kafka\.Kafka' | grep java | grep -v grep | awk '{print $1}')
if [ -z "$PIDS" ]; then
echo "No kafka server to stop"
exit 1
else
kill -s TERM $PIDS
fi
1.面试题目集合
2.分布式实现算法
3.spark mllib
package sqlparser;
import java.io.*;
public class func{
public static String readToString(String fileName) {
String encoding = "UTF-8";
File file = new File(fileName);
Long filelength = file.length();
byte[] filecontent = new byte[filelength.intValue()];
try {
FileInputStream in = new FileInputStream(file);
in.read(filecontent);
in.close();
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
try {
return new String(filecontent, encoding);
} catch (UnsupportedEncodingException e) {
System.err.println("The OS does not support " + encoding);
e.printStackTrace();
return null;
}
}}
秋天的颜色01 name+qq
Paic880807
import numpy as np
import pandas as pd
pd.set_option('display.max_columns', 10)
pd.set_option('expand_frame_repr', False)
def loadData():
df_off = pd.read_csv(r'ccf_offline_stage1_train.csv')
df_on = pd.read_csv(r'ccf_online_stage1_train.csv')
df_test = pd.read_csv(r'ccf_offline_stage1_test_revised.csv') return df_off ,df_on ,df_test
# return df_off[:10],df_on[:10],df_test[:10]
# User_id Merchant_id Coupon_id Discount_rate Distance Date_received Date
# 0 1439408 2632 NaN NaN 0.0 NaN 20160217.0
# 1 1439408 4663 11002.0 150:20 1.0 20160528.0 NaN
# 2 1439408 2632 8591.0 20:1 0.0 20160217.0 NaN
# 3 1439408 2632 1078.0 20:1 0.0 20160319.0 NaN
# 4 1439408 2632 8591.0 20:1 0.0 20160613.0 NaN
# User_id Merchant_id Action Coupon_id Discount_rate Date_received Date
# 0 13740231 18907 2 100017492 500:50 20160513.0 NaN
# 1 13740231 34805 1 NaN NaN NaN 20160321.0
# 2 14336199 18907 0 NaN NaN NaN 20160618.0
# 3 14336199 18907 0 NaN NaN NaN 20160618.0
# 4 14336199 18907 0 NaN NaN NaN 20160618.0
# User_id Merchant_id Coupon_id Discount_rate Distance Date_received
# 0 4129537 450 9983 30:5 1.0 20160712
# 1 6949378 1300 3429 30:5 NaN 20160706
# 2 2166529 7113 6928 200:20 5.0 20160727
# 3 2166529 7113 1808 100:10 5.0 20160727
# 4 6172162 7605 6500 30:1 2.0 20160708
# 0 977900 'User_id','Merchant_id','Coupon_id','Discount_rate','Date_received','Date'
# -1 701602
# 1 75382
# Name: label, dtype: int64
# -1 10557469
# 0 655898
# 1 216459
df_off,df_on,df_test = loadData() df_off['label'] = -1
df_off.loc[df_off['Coupon_id'].notnull() & df_off['Date'].notnull(),'label'] = 1
df_off.loc[df_off['Coupon_id'].notnull() & df_off['Date'].isnull(),'label'] = 0 df_on['label'] = -1
df_on.loc[df_on['Coupon_id'].notnull() & df_on['Date'].notnull(),'label'] = 1
df_on.loc[df_on['Coupon_id'].notnull() & df_on['Date'].isnull(),'label'] = 0 real_off = df_off[df_off.label.isin([0,1])]
real_on = df_on[df_on.label.isin([0,1])] real_all = pd.concat([real_off[['User_id','Merchant_id','Coupon_id','Discount_rate','Date_received','Date','label']],real_on[['User_id','Merchant_id','Coupon_id','Discount_rate','Date_received','Date','label']]])
print (real_all.iloc[:,0].size,real_off.iloc[:,0].size,real_on.iloc[:,0].size)
real_all['tmp'] = pd.to_datetime( (real_all['Date_received'].astype(int).apply(str)))
real_all['weekday'] = real_all['tmp'].dt.weekday_name
print (real_all.groupby(['weekday','label']).count())
# pd.pivot_table(real_all,values = 'label',index='weekday')
http://mooc.study.163.com/university/deeplearning_ai#/c __author__ = 'Administrator'
import time
import pandas as pd
def runtime(func):
def wrapper(*args,**kwargs):
t1 = time.time()
func(*args,**kwargs)
t2=time.time()
print ("{0}函数调用耗时:{1:.2f}".format (func.__name__,t2-t1))
return wrapper() def loadData():
df_train = pd.read_csv("weibo_train_data.txt",header = None,sep = '\t')
df_train.columns = ["uid","mid","date","forward","comment","like","content"]
df_test = pd.read_csv("weibo_predict_data.txt",header = None,sep = '\t')
df_test.columns = ["uid","mid","date","content"]
return df_train,df_test def dataProcess(data):
df = data.groupby('uid').agg(['median','mean'])
df.columns =[ 'forward_median','forward_mean','comment_median','comment_mean','like_median','like_mean']
train_stat = df.apply(pd.Series.round)
uid_dict = {}
for uid,row in df.iterrows():
uid_dict[uid] = row
return uid_dict def fill_with_fixed_data(f,c,l):
df_train,df_test = loadData()
df1 = df_test[['uid','mid']]
df1['forward'] = f
df1['comment'] = c
df1['like'] = l
result = []
for _,row in df1.iterrows():
result.append("{0}\t{1}\t{2},{3},{4}\n".format(row[0],row[1],row[2],row[3],row[4]))
filename = "weibo_predict_{}_{}_{}.txt".format( f,c,l)
f= open(filename,'w')
f.writelines(result)
f.close()
return result def fill_with_stat_data(stat = 'median'):
df_train,df_test = loadData()
uid_dict = dataProcess(df_train)
df1 = df_test[['uid','mid']]
forward,comment,like = [],[],[]
print (uid_dict)
for uid in df_test['uid']:
if uid in uid_dict:
forward.append(int(uid_dict[uid]["forward_"+stat]))
comment.append(int(uid_dict[uid]["comment_"+stat]))
like.append(int(uid_dict[uid]["like_"+stat]))
else:
forward.append(0)
comment.append(0)
like.append(0)
df1['forward'] = forward
df1['comment'] = comment
df1['like'] = like
result = []
for _,row in df1.iterrows():
result.append("{0}\t{1}\t{2},{3},{4}\n".format(row[0],row[1],row[2],row[3],row[4]))
filename = "weibo_predict_{}.txt".format( stat)
f= open(filename,'w')
f.writelines(result)
f.close()
return result fill_with_stat_data( )
from numpy import *
import operator
from functools import reduce
def loadDataSet():
postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0,1,0,1,0,1] #1 is abusive, 0 not
return postingList,classVec def createVocabList(dataSet):
vocabSet = set(reduce(operator.add, dataSet))
return list(vocabSet) def setOfWords2Vec(vocabList, inputSet):
returnVec = [0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] = 1
else: print ("the word: %s is not in my Vocabulary!" % word)
return returnVec
from numpy import *
from os import listdir
from numpy.ma import zeros
class kNN(object):
def __init__(self,**kwargs):
pass def data2matrix(self):
fr = open('G:\zqh_work\ML\datasets\ml_ac\Ch02\datingTestSet2.txt')
lines = fr.readlines()
line_num = len(lines)
mat = zeros((line_num,3))
labels = []
for i in range(line_num):
mat[i] = lines[i].strip().split('\t')[0:3]
labels[i] = lines[i].strip().split('\t')[-1]
return mat,labels def norm_data(self,mat):
max = mat.max(0)
min = mat.min(0)
diff = max - min
rows = mat.shape[0]
norm_mat = (mat - tile(min,(rows,1)))/tile(diff,(rows,1))
return norm_mat def classify(self,inX,norm_mat,labels,k):
rows = norm_mat.shape[0]
for i in range(rows): def test(self):
mat,labels = self.data2matrix()
norm_mat = self.norm_data(mat)
print (norm_mat)
return norm_mat if __name__ == '__main__':
knn=kNN()
knn.test()
http://keras-cn.readthedocs.io/en/latest/
http://wiki.jikexueyuan.com/project/tensorflow-zh/get_started/introduction.html
https://segmentfault.com/a/1190000002766035
https://www.jianshu.com/p/8bb456cb7c77
http://cache.baiducontent.com/c?m=9f65cb4a8c8507ed4fece763104d96275e03c1743ca083572c85c91f84642c1c0733fee37c6243198385212240f8543d8883560b200356b799c28f4ac9fecf6879877a74250b873105d36eb8ca36768373c100beb81897adf04584afa2929d07139344040a97f0fc4d01648b2cae033093b1993f025e60eda76734b81f2c74c33441c650f997256f77d1b189081b837d867610e7ef68f52913c548e2485b7702fd0ca6092131309758268f1e6e4585ea2dbb7d3306&p=c2769a479d9e0bb312bd9b7e0d1488&newp=8465c64ad49506e42abd9b7e0d1496231610db2151d7d4146b82c825d7331b001c3bbfb423251003d2c0776600af495ee8f5367630032ba3dda5c91d9fb4c57479de607f02&user=baidu&fm=sc&query=org%2Eapache%2Espark%2Esql%2Eexecution%2EBufferedRowIterator%2EhasNext&qid=853831ee00006451&p1=7
org.apache.spark.sql.execution.BufferedRowIterator.hasNext
spark.write是否是分布式写?
scala 事务控制?
yarn的web ui 配置,rm是哪台机器 ?
为什么不用yarn-cluster?不好收集日志?
executor 日志 如何 查看 ?
spark的几个配置文件适用情形?
https://www.cnblogs.com/sorco/p/7070922.html
http://hongjiang.info/scala/ 写点什么
spark executor 日志:$SPARK_HOME/work/$app_id/$executor_id/stdout
总结一下Spark中各个角色的JVM参数设置:
(1)Driver的JVM参数:
-Xmx,-Xms,如果是yarn-client模式,则默认读取spark-env文件中的SPARK_DRIVER_MEMORY值,-Xmx,-Xms值一样大小;如果是yarn-cluster模式,则读取的是spark-default.conf文件中的spark.driver.extraJavaOptions对应的JVM参数值。
PermSize,如果是yarn-client模式,则是默认读取spark-class文件中的JAVA_OPTS="-XX:MaxPermSize=256m $OUR_JAVA_OPTS"值;如果是yarn-cluster模式,读取的是spark-default.conf文件中的spark.driver.extraJavaOptions对应的JVM参数值。
GC方式,如果是yarn-client模式,默认读取的是spark-class文件中的JAVA_OPTS;如果是yarn-cluster模式,则读取的是spark-default.conf文件中的spark.driver.extraJavaOptions对应的参数值。
以上值最后均可被spark-submit工具中的--driver-java-options参数覆盖。
(2)Executor的JVM参数:
-Xmx,-Xms,如果是yarn-client模式,则默认读取spark-env文件中的SPARK_EXECUTOR_MEMORY值,-Xmx,-Xms值一样大小;如果是yarn-cluster模式,则读取的是spark-default.conf文件中的spark.executor.extraJavaOptions对应的JVM参数值。
PermSize,两种模式都是读取的是spark-default.conf文件中的spark.executor.extraJavaOptions对应的JVM参数值。
GC方式,两种模式都是读取的是spark-default.conf文件中的spark.executor.extraJavaOptions对应的JVM参数值。
(3)Executor数目及所占CPU个数
如果是yarn-client模式,Executor数目由spark-env中的SPARK_EXECUTOR_INSTANCES指定,每个实例的数目由SPARK_EXECUTOR_CORES指定;如果是yarn-cluster模式,Executor的数目由spark-submit工具的--num-executors参数指定,默认是2个实例,而每个Executor使用的CPU数目由--executor-cores指定,默认为1核。
每个Executor运行时的信息可以通过yarn logs命令查看到,类似于如下:
14/08/13 18:12:59 INFO org.apache.spark.Logging$class.logInfo(Logging.scala:58): Setting up executor with commands: List($JAVA_HOME/bin/java, -server, -XX:OnOutOfMemoryError='kill %p', -Xms1024m -Xmx1024m , -XX:PermSize=256M -XX:MaxPermSize=256M -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -Xloggc:/tmp/spark_gc.log, -Djava.io.tmpdir=$PWD/tmp, -Dlog4j.configuration=log4j-spark-container.properties, org.apache.spark.executor.CoarseGrainedExecutorBackend, akka.tcp://spark@sparktest1:41606/user/CoarseGrainedScheduler, 1, sparktest2, 3, 1>, <LOG_DIR>/stdout, 2>, <LOG_DIR>/stderr)
其中,akka.tcp://spark@sparktest1:41606/user/CoarseGrainedScheduler表示当前的Executor进程所在节点,后面的1表示Executor编号,sparktest2表示ApplicationMaster的host,接着的3表示当前Executor所占用的CPU数目。
先在spark-env.sh 增加SPARK_HISTORY_OPTS;
然后启动start-history-server.sh服务;
就可以看到启动了HistoryServer进程,且监听端口是18080。
之后就可以在web上使用http://hostname:18080愉快的玩耍了。
作者:俺是亮哥
链接:https://www.jianshu.com/p/65a3476757a5
來源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
问题的症结就在于:闭包没有办法序列化。在这个例子里,闭包的范围是:函数parser以及它所依赖的一个隐式参数: formats , 而问题就出在这个隐式参数上, 它的类型是DefaultFormats,这个类没有提供序列化和反序列自身的说明,所以Spark无法序列化formats,进而无法将task推送到远端执行。
隐式参数formats是为extract准备的,它的参数列表如下:
org.json4s.ExtractableJsonAstNode#extract[A](implicit formats: Formats, mf: scala.reflect.Manifest[A]): A = ...
- 1
找到问题的根源之后就好解决了。实际上我们根本不需要序列化formats, 对我们来说,它是无状态的。所以,我们只需要把它声明为一个全局静态的变量就可以绕过序列化。所以改动的方法就是简单地把implicit val formats = DefaultFormats
的声明从方法内部迁移到App Object的字段位置上即可。
{
"color_scheme": "Packages/Color Scheme - Default/Monokai.tmTheme",
"font_size": 13,
"ignored_packages":
[
"Vintage"
],
"preview_on_click": false,
"word_wrap": "true"
}
ambari 部署
scala : 静态方法,单例对象,伴生对象
spark job server
spark etl
spark 资源限制
yarn 资源队列限制 用户限制
算法
hdfs 挂载 像访问自己的目录
f5
keepalived
sdg agent 采集redolog
active mq vs kafka
tomcat 备份
finixs
组的概念? hadoop组
hue权限控制
spark thirft service
spark submit
ranger 只控制sdo?不能控制命令行?
sms抓取元数据与ctm 配对
ranger ............
scala 闭包
java 内部类
/etc/security/limits.conf
同步命令:scp –r /seabox/develop/ 26.6.0.141:/seabox
谓词下推
整理要了解的业务知识
(select z.*,row_number() over(partition by z.deal_no order by z.biz_date desc) rn
from bridge.summit_i_repo_general_info_ib z
where z.deal_no not in (select distinct deal_no from bridge.summit_i_repo_general_info_ib where deal_status in ('3', '4') and biz_date <= '{DATE_YYYYMMDD}')
)
如何匹配 :received 数字 rows ?
START_TIME=`date "+%Y-%m-%d %H:%M:%S"` ????????
awk -F: '{print"用户帐号:"$1}'
sqoop 各参数
kettle 导出为xml文件
http://confluence.paic.com.cn:6060/pages/viewpage.action?pageId=2132765
http://www.docin.com/p-1354952858.html
oracle 连接:
JDBC
ODBC
OCI
JNDI
http://logging.apache.org/log4j/2.x/
查看当前进程:ps
可以用来查找某一应用运行在哪里 :ps -aux | grep hive
flume 收集log4j日志的例子:
http://blog.csdn.net/nsrainbow/article/details/36875123
H75244
Uy1caTod6Hgb
建表时没有定义分隔符,分桶等,在表建成之后还能不能再加上?
val dfa = sc.parallelize(List(("1", "aa", "ab"), ("2", "bb", "bb"),("4", "dd", "dd"))).toDF("key", "val1", "val2")
val dfb = sc.parallelize(List(("1", "aa", "ab"), ("2", "bb", "cc"), ("3", "cc", "cc"))).toDF("key", "val1", "val2")
val dfc = sc.parallelize(List( ("key"),("val1"))).toDF("pkey")
val rv1 = dfb.join(dfa, dfa("key") === dfb("key") and dfa("val1") === dfb("val1"), "outer").show()
val tmp = dfc.select("pkey").collect().map(_(0).toString())
val mid = new Array[org.apache.spark.sql.Column](tmp.length)
for (i<- 0 until tmp.length) mid(i)=dfa(tmp(i))===dfb(tmp(i))
val rv2 = dfb.join(dfa, mid.reduce(_ and _), "outer")
val cols = dfb.columns
val all_col = new Array[org.apache.spark.sql.Column](cols.length)
for (i <- 0 until cols.length) all_col(i)=when(dfb("key").isNull, dfa(cols(i))).otherwise(dfb(cols(i))).as(cols(i))
val rv3 = rv2.select(all_col:_*).show()
rv2.select(when(dfb("key").isNull, dfa("key")).otherwise(dfb("key")).as("key"))
import scala.collection.mutable.ArrayBuffer
val cols = dfb.columns
val a=dfb.dtypes
val b = new ArrayBuffer[String]()
for (i <- a if i._2=="IntegerType") b+=i._1
val numArray = b.toArray
val num_col = new Array[org.apache.spark.sql.Column](numArray.length)
for (i <- 0 until numArray.length) num_col(i)=when(dfb("key").isNull, lit(0)).otherwise(dfb(numArray(i))).as(numArray(i))
val strArray = cols.filterNot(numArray.contains(_))
val str_col = new Array[org.apache.spark.sql.Column](strArray.length)
for (i <- 0 until strArray.length) str_col(i)=when(dfb("key").isNull, dfa(strArray(i))).otherwise(dfb(strArray(i))).as(strArray(i))
val rv3 = rv2.select((num_col ++ str_col):_*)
rv3.show()
每日 mark的更多相关文章
- mark标签:
mark元素表示页面中需要突出或高亮显示的内容,在搜索结果中也常常出现,比如检索结果中的关键词高亮显示. 案例:[html]<!DOCTYPE HTML><html> & ...
- 上班从换一张桌面壁纸开始——开源小工具Bing每日壁纸
发布一个自用的开源小软件,Bing每日壁纸,使用c# winform开发.该小软件可以自动获取Bing的精美图片设置为壁纸,并且支持随机切换历史壁纸,查看壁纸故事. 功能特性 自动获取Bing最新图片 ...
- LeetCode 每日一题「判定字符是否唯一」
我是陈皮,一个在互联网 Coding 的 ITer,微信搜索「陈皮的JavaLib」第一时间阅读最新文章,回复[资料],即可获得我精心整理的技术资料,电子书籍,一线大厂面试资料和优秀简历模板. 题目 ...
- 每日三道面试题,通往自由的道路5——JVM
茫茫人海千千万万,感谢这一秒你看到这里.希望我的面试题系列能对你的有所帮助!共勉! 愿你在未来的日子,保持热爱,奔赴山海! 每日三道面试题,成就更好自我 昨天既然我们聊到了JVM,那我们继续这一个话题 ...
- 【Java每日一题】20170106
20170105问题解析请点击今日问题下方的"[Java每日一题]20170106"查看(问题解析在公众号首发,公众号ID:weknow619) package Jan2017; ...
- 【Java每日一题】20170105
20170104问题解析请点击今日问题下方的"[Java每日一题]20170105"查看(问题解析在公众号首发,公众号ID:weknow619) package Jan2017; ...
- 【Java每日一题】20170104
20170103问题解析请点击今日问题下方的"[Java每日一题]20170104"查看(问题解析在公众号首发,公众号ID:weknow619) package Jan2017; ...
- 【Java每日一题】20170103
20161230问题解析请点击今日问题下方的"[Java每日一题]20170103"查看(问题解析在公众号首发,公众号ID:weknow619) package Jan2017; ...
- 每日设置Bing首页图片为壁纸
闲来无事,手痒痒要做一个什么小工具. 于是乎便有了本文. 当有一个想法的时候,首先免不了网上搜索一番以便看一下有木有网友有过类似的想法. 很显然--有! 因此本文大代码是从几个地方搜索,然后组合的. ...
随机推荐
- python中的类(二)
python中的类(二) 六.类的成员 字段:普通字段,静态字段 eg: class Province(): country=’中国’ #静态字段,保存在类中,执行时可以通过类或对象访问 def __ ...
- Kali-linux使用Metasploitable操作系统
Metasploitable是一款基于Ubuntu Linux的操作系统.该系统是一个虚拟机文件,从http://sourceforge.net/projects/metasploitable/fil ...
- SQL SERVER或oracl如何判断删除列
ORACLE: BEGIN EXECUTE IMMEDIATE 'DROP TABLE CUX_PO_VENDORS';EXCEPTION WHEN OTHERS THEN NULL;END ...
- Go语言之旅:基本类型
原文地址:https://learn-linux.readthedocs.io 欢迎关注我们的公众号:小菜学编程 (coding-fan) Go 内置了以下基本类型: 布尔 bool 字符串 stri ...
- Ubuntu SSH登陆出现Access Denied错误
在/etc/ssh/sshd_config 中有个 PermitRootLogin, 改成“PermitRootLogin yes”就可以了 重启ssh: /etc/init.d/ssh restar ...
- 一次JVM内存调优过程
项目中,有个同事写的JOB,使用到查询数据库大量历史协议数据(大概300W左右),由于对存放数据的list或map没有做“用完即时声明释放”. 导致此Jar部署在windows service后,进程 ...
- 【visual studio code 的python开发环境搭建 】
打开vs code,按按F1或者Ctrl+Shift+P打开命令行,然后输入ext install 输入Python,选第一个,这个用的最多,支持自动补全代码等功能,点击安装按钮,即可安装 下面试着编 ...
- Easy-UI中datebox的默认显示当前日期的最简单的两种方法
在中有一个Today按钮就是实现显示当前日期,所以我们在src/jquery.datebox.js文件中可以找到currentText:'Today'.所以我们可以使用'currentText'和'T ...
- redis学习笔记(三)
Spring data redis: 要求: Redis 版本 > 2.6 与 Lettuce 或 Jedis 集成,两种java开源Redis库. Spring redis主要做的两件事: 连 ...
- Redis的特性以及优势(附官网)
NoSQL:一类新出现的数据库(not only sql) 泛指非关系型的数据库 不支持SQL语法 存储结构跟传统关系型数据库中的那种关系表完全不同,nosql中存储的数据都是KV形式 NoSQL的世 ...