KMP算法也算是相当经典,但是对于初学者来说确实有点绕,大学时候弄明白过后来几年不看又忘记了,然后再弄明白过了两年又忘记了,好在之前理解到了关键点,看了一遍马上又能理解上来。关于这个算法的详解网上文章可以说遍地开花,可我觉得大多数文章,不需要看内容,光看看详解的文章篇幅就可以吓死人,然后讲来讲去内容也让人云里雾里。我在这里结合自己的理解,简单的解释一下。

在读这篇文章之前,首先请忘记以前了解的关于KMP算法的任何知识点。因为关于有些文章的解释还不一样,可能会让本来就很绕的说法变得更绕,与其说哪样还不如心中无一物一切归零重新开始。

然后来看一张图,这是两段字符暴力匹配的过程:

以上黄色部分是多余比较,红色是不匹配,绿色的匹配成功

目标字符串T:anndandnacanndana
匹配字符串P:anndana

匹配的时候匹配字符串从前到后移动了10次比较结束,最后得到确认结果。但是事实上图中黄色部分的比较是不需要的,也就是说如果利用KMP算法的特点,从中可以减少4次移动,从而会减少一些无意义的比较次数。那么问题来了,KMP算法为什么能减少这么多次比较次数呢?这究竟是有什么内部含义?

事实上,KMP算法就是典型的利用空间换时间,首先根据匹配字符串(annacanna) 特点,换算出来一张表(Next数组),每次移动多少根据表中的数据取值。

好吧,以上就是KMP的概要,归结起来也就是两条法则:

Next数组计算法则:对于任何字符串P的第n项(记为Pn),此时的Next[n]为字符串P第n项之前的前缀和后缀共有字符串的最大长度。所谓前缀和后缀,就是分别除去首字符和末尾字符后的所有元素,然后取最大共有字符串的长度

以anndana例:
1."a"的前缀和后缀都为空集,共有元素的长度为0;
2."an"的前缀为[a],后缀为[n],共有元素的长度为0;
3."ann"的前缀为[a, an],后缀为[nn, n],共有元素的长度0;
4."annd"的前缀为[a, an, ann],后缀为[nnd, nn, d],共有元素的长度为0;
5."annda"的前缀为[a, an, ann, annd],后缀为[nnda, nda,da, a],共有元素为"a",长度为1;
6."anndan"的前缀为[a, an, ann, annd, annda],后缀为[nndan, ndan, dan, an, a],共有元素为"an","a",但是长度为2;
7."anndana"的前缀为[a, an, ann, annd, annda, anndan],后缀为[nndana, ndana, dana, ana, na, a],共有元素“a”的长度为1。

移动法则:对于要比较的目标字符串T和匹配字符串P,首先利用匹配字符串P换算出来匹配移动表Next数组,然后匹配,当P(n)与T(m)不等的时候:
1) 如果n=0,则匹配字符串向右移动1位
2) 如果n>0 则取Next(n),向右移动整个匹配字符串直到P(Next(n))与T(m)对其比较,可以说移动位数就是已匹配字符串长度-Next(n)。

那么结合上图理解

1.当index=0的时候,不匹配索引出现在6,因为next[6]=2,那么按照上面的法则,就应该讲P(2)与T(6)对其比较,于是需要将P移动5位,那么index=1与index=2,index=3就是多余的比较而画上了黄色。

2.当index=3的时候因为第一项就不匹配,于是出现时n=0,此时右移一位,同样后面也是这个道理。

3.当index=4的时候,因为第三项不匹配,于是出现n=2,而next[2]=0,按照上面法则就应该移动2位。这一行道理也很简单,因为T1=P1,T2=P2,但是P1!=P2,那么必然会有T2!=P1,所以index=5也是多余的。

事实上,以上图的目标字符串T:anndandnacanndana,匹配字符串P:anndana为例,当T(6)和P(6)出现不等的时候,此时取Next(6)=2,然后移动使得P(2)与T(6)比较。可是我们为什么会想到移动这么多位呢?因为对于P来说,前两项和第4,5两项相等都是an,此时算出来Next数组对应值为2,那么第2,3两项也就是nd断然不会与前两项或者第4,5两项相等,可以想象假如相等,那么next数组对应的值就不是2了,所移动的位数也会发生改变。因为next数组决定了字符串的特诊,而KMP算法巧妙的利用这条已经比较过的信息来规避掉多余的比较。细细品味,其他类型的字符串也很巧妙,但是本质还是一样的。

void getnext(int next[],string T)
{
next[]=-;
int i=,j=-;
while(i<T.length()-)
{
if( (j==-)||(T[i]==T[j]) )
{
i++;
j++;
if(T[i]!=T[j]) next[i]=j;
else next[i]=next[j];
}
else
j=next[j];
}
}
int KMP(int pos,string M,string N)
{
int next[];
getnext(next,N);
int i=pos-,j=;
int mlen=M.length(),nlen=N.length();
while( (i<mlen )&&(j<nlen ))
{
if( (j==-)||(M[i]==N[j]) )
{
i++;j++;
}
else
j=next[j];
}
if(j>=nlen) return i-nlen+;
else return ;
}

KMP算法简明扼要的理解的更多相关文章

  1. KMP算法最浅显理解——一看就明确

    说明 KMP算法看懂了认为特别简单,思路非常easy,看不懂之前.查各种资料,看的稀里糊涂.即使网上最简单的解释,依旧看的稀里糊涂. 我花了半天时间,争取用最短的篇幅大致搞明确这玩意究竟是啥. 这里不 ...

  2. KMP算法最浅显理解——一看就明白

    https://blog.csdn.net/starstar1992/article/details/54913261 说明 KMP算法看懂了觉得特别简单,思路很简单,看不懂之前,查各种资料,看的稀里 ...

  3. kmp算法模板及理解

    kmp算法是复杂度为O(n+m)的字符串匹配算法; 首先kmp算法的核心是在模式串中获得next数组,这个数组表示模式串的子串的前缀和后缀相同的最长长度; 这样在匹配的过程中如果指到不匹配的位置,模式 ...

  4. KMP算法-从头到尾彻底理解KMP

    一:背景 给定一个主串(以 S 代替)和模式串(以 P 代替),要求找出 P 在 S 中出现的位置,此即串的模式匹配问题. Knuth-Morris-Pratt 算法(简称 KMP)是解决这一问题的常 ...

  5. KMP算法中我对获取next数组的理解

    之前在学KMP算法时一直理解不了获取next数组的函数是如何实现的,现在大概知道怎么一回事了,记录一下我对获取next数组的理解. KMP算法实现的原理就不再赘述了,先上KMP代码: 1 void g ...

  6. KMP算法(研究总结,字符串)

    KMP算法(研究总结,字符串) 前段时间学习KMP算法,感觉有些复杂,不过好歹是弄懂啦,简单地记录一下,方便以后自己回忆. 引入 首先我们来看一个例子,现在有两个字符串A和B,问你在A中是否有B,有几 ...

  7. 基于KMP算法的字符串模式匹配问题

    基于KMP算法的字符匹配问题 反正整个清明都在纠结这玩意...差点我以为下个清明要给自己过了. 至于大体的理解,我就不再多说了(还要画图多麻烦鸭),我参考了以下两个博客,写的真的不错,我放了超链接,点 ...

  8. [模板]KMP算法

    昨天晚上一直在调KMP(模板传送门),因为先学了hash[关于hash的内容会在随后进行更(gu)新(gu)]于是想从1开始读...结果写出来之后一直死循环,最后我还是改回从0读入字符串了. [预先定 ...

  9. HDU_1711_初识KMP算法

    Number Sequence Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

随机推荐

  1. Conntect Bluetooth devices in iOS.

    I understand that the External Accessory framework in iOS 3.0 and later will allow my application to ...

  2. Xcode与OX 版本对照表

    xcode1.0-xcode2.x 版本 OS X运行版本 OS X SDK(s) 1.0 OS X Panther(10.3.x) OS X Puma(10.1.x),OS X Jaguar(10. ...

  3. 数据库update死锁

    比较常见的死锁场景,并发批量update时的一个场景: update cross_marketing set gmtModified = NOW(), pageview = pageview+ #ex ...

  4. spring data jpa hibernate jpa 三者之间的关系

    JPA规范与ORM框架之间的关系是怎样的呢? JPA规范本质上就是一种ORM规范,注意不是ORM框架——因为JPA并未提供ORM实现,它只是制订了一些规范,提供了一些编程的API接口,但具体实现则由服 ...

  5. python 深拷贝与浅拷贝

    浅拷贝的方式有: lst=[1,2,3] (1)直接赋值: lst_cp = lst (2)for循环遍历生成:lst_cp= [i for i in lst] (3)copy模块下,copy.cop ...

  6. Node.js高级编程读书笔记Outline

    Motivation 世俗一把,看看前端的JavaScript究竟能做什么. 顺便检验一下自己的学习能力. Audience 想看偏后台的Java程序员关于前端JavaScript的认识的职业前端工程 ...

  7. Nginx 502 Bad Gateway 错误的原因及解决方法

    http://my.oschina.net/zhouyuan/blog/118708 刚才在调试程序的时候,居然服务器502错误,昨天晚上也发生了,好像我没有做非常规的操作. 然后网上寻找了下答案, ...

  8. SIFT特征提取分析(转载)

    转载自: http://blog.csdn.net/abcjennifer/article/details/7639681 SIFT(Scale-invariant feature transform ...

  9. LintCode Reverse LinkedList (ArrayList 和 LinkedList 的区别)

    1. ArrayList 和 LinkedList 的区别 http://pengcqu.iteye.com/blog/502676 2. How to reverse LinkedList http ...

  10. Directory的GetFiles方法

    想实现一个功能 :比如多个业务审批流程公用一个审批表的时候,有一个提示审批信息的页面 ,点击该页面不同的业务审批流程记录的时候,跳转到不同业务流程的详细显示界面 额 这样说 貌似以后我自己也看不明白 ...