Time Limit: 1000MS   Memory Limit: 65535KB   64bit IO Format:

Description

求a的b次方,取模mod(1<=a,b,mod<=1e18)

Input

多组输入,每组数据一行,3个正整数,分别为a,b,mod

Output

每组数据输出一行,为答案 

Sample Input

2 10 10000000
5 100 1
0 2 37

Sample Output

1024
0
0 //模版题,主要是考虑到1e18的巨大,普通的快速幂会爆LL 所以在相乘的地方用上快速乘,避免爆LL。
#include"cstdio"

long long mod_mul(long long a,long long b,long long p) {
long long r=0;
long long t=a;
while(b) {
if(b&1) r=(r+t)%p;
t=(t<<1)%p;
b>>=1;
}
return r;
}
long long mod_pro(long long a,long long b,long long p) {
long long r=1;
long long t=a;
while(b) {
if(b&1) r=mod_mul(r,t,p)%p;
t=mod_mul(t,t,p)%p;
b>>=1;
}
return r;
}
int main(){
long long a,b,mod;
while(~scanf("%I64d%I64d%I64d",&a,&b,&mod)){
printf("%I64d\n",mod_pro(a,b,mod));
}
return 0;
}

  

ACM:a^b%p-数论-快速幂-快速乘的更多相关文章

  1. 取模性质,快速幂,快速乘,gcd和最小公倍数

    一.取模运算 取模(取余)运算法则: 1. (a+b)%p=(a%p+b%p)%p; 2.(a-b)%p=(a%p-b%p)%p; 3.(a*b)%p=(a%p * b%p)%p; 4.(a^b)%p ...

  2. HDU 4549 矩阵快速幂+快速幂+欧拉函数

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  3. 【BZOJ 1409】 Password 数论(扩展欧拉+矩阵快速幂+快速幂)

    读了一下题就会很愉快的发现,这个数列是关于p的幂次的斐波那契数列,很愉快,然后就很愉快的发现可以矩阵快速幂一波,然后再一看数据范围就......然后由于上帝与集合对我的正确启示,我就发现这个东西可以用 ...

  4. BZOJ-2326 数学作业 矩阵乘法快速幂+快速乘

    2326: [HNOI2011]数学作业 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1564 Solved: 910 [Submit][Statu ...

  5. BZOJ-2875 随机数生成器 矩阵乘法快速幂+快速乘

    题目没给全,吃X了... 2875: [Noi2012]随机数生成器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 1479 Solved: 829 ...

  6. HDU 5607 graph 矩阵快速幂 + 快速幂

    这道题得到了学长的助攻,其实就是一个马尔科夫链,算出一步转移矩阵进行矩阵快速幂就行了,无奈手残 这是我第一回写矩阵快速幂,写的各种毛病,等到调完了已经8点44了,交了一发,返回PE,(发现是少了换行) ...

  7. 快速幂&快速乘法

    尽管快速幂与快速乘法好像扯不上什么关系,但是东西不是很多,就一起整理到这里吧 快速幂思想就是将ax看作x个a相乘,用now记录当前答案,然后将指数每次除以2,然后将当前答案平方,如果x的2进制最后一位 ...

  8. A^B mod C (快速幂+快速乘+取模)题解

    A^B mod C Given A,B,C, You should quickly calculate the result of A^B mod C. (1<=A,B,C<2^63). ...

  9. hdu4549 M斐波那契数列 矩阵快速幂+快速幂

    M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n]的 ...

随机推荐

  1. 登录到mysql查看binlog日志

    查看当前第一个binlog文件的内容 show binlog events; 查看指定binlog文件内容 show binlog events in 'mysql-bin.000002'; 查看当前 ...

  2. 运维自动化之ansible的安装与使用(包括模块与playbook使用)(转发)

    原文  http://dl528888.blog.51cto.com/2382721/1435415 我使用过puppet(地址是http://dl528888.blog.51cto.com/2382 ...

  3. thinkphp调用phpqrcode.php生成二维码

    thinkphp3. 把phpqrcode文件夹放在ThinkPHP\Library\Vendor\下面 phpqrcode下载: http://files.cnblogs.com/files/qho ...

  4. 玲珑杯1007-A 八进制大数加法(实现逻辑陷阱与题目套路)

    题目连接:http://www.ifrog.cc/acm/problem/1056 DESCRIPTION Two octal number integers a, b are given, and ...

  5. php代码效率测试

    对于一个被加载的页面,而遇到会卡的原因 ,代码量大,为了减少一句话分析,就采用分段式判断. 从php手册了解到,使用microtime函数,具体方法可参见php手册对这函数的用法 定义get_exec ...

  6. Almost Sorted Array

    http://acm.hdu.edu.cn/contests/contest_showproblem.php?cid=646&pid=1006 #include<iostream> ...

  7. JMeter处理jdbc请求后的响应结果

    JMeter如果进行JDBC请求,请求后的响应结果如何给下一个请求用(也就是传说中的关联),于是研究了一下,下面将学习的成果做个记录: 1.添加 "JDBC Connection Confi ...

  8. hdu 1370 Biorthythms 中国剩余定理

    Biorhythms Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  9. Maven 项目导入错误解决。

    Description Resource Path Location Type Failure to transfer org.apache.maven:maven-core:jar:2.0.6 fr ...

  10. POJ 2503 字典树

    题目链接:http://poj.org/problem?id=2503 题意:给定一个词典,输入格式为[string1' 'string2]  意思是string2的值为string1. 然后给定一波 ...