[HDU3709]Balanced Number

试题描述

A balanced number is a non-negative integer that can be balanced if a pivot is placed at some digit. More specifically, imagine each digit as a box with weight indicated by the digit. When a pivot is placed at some digit of the number, the distance from a digit to the pivot is the offset between it and the pivot. Then the torques of left part and right part can be calculated. It is balanced if they are the same. A balanced number must be balanced with the pivot at some of its digits. For example, 4139 is a balanced number with pivot fixed at 3. The torqueses are 4*2 + 1*1 = 9 and 9*1 = 9, for left part and right part, respectively. It's your job
to calculate the number of balanced numbers in a given range [x, y].

输入

The input contains multiple test cases. The first line is the total number of cases T (0 < T ≤ 30). For each case, there are two integers separated by a space in a line, x and y. (0 ≤ x ≤ y ≤ 1018).

输出

For each case, print the number of balanced numbers in the range [x, y] in a line.

输入示例


输出示例


数据规模及约定

见“输入

题解

令 f[k][i][j][s] 表示考虑数的前 i 位,最高位为 j,支点在位置 k,支点右力矩 - 左力矩 = s 的数有多少个。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
#define LL long long LL read() {
LL x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} #define maxn 20
#define maxs 1800
LL f[maxn][maxn][10][maxs]; int num[maxn];
LL sum(LL x) {
if(!x) return 1;
int cnt = 0; LL tx = x;
while(x) num[++cnt] = x % 10, x /= 10;
LL ans = 0;
for(int i = cnt - 1; i; i--)
for(int k = 1; k <= i; k++)
for(int j = 1; j <= 9; j++) ans += f[k][i][j][0];
for(int i = cnt; i; i--) {
for(int k = cnt; k; k--) {
int s = 0;
for(int x = cnt; x > i; x--) s += (x - k) * num[x];
if(s < 0 || s >= maxs) continue;
for(int j = i < cnt ? 0 : 1; j < num[i]; j++) {
ans += f[k][i][j][s];
// if(!j && !s && i > 1) ans--;
}
}
}
for(int k = 1; k <= cnt; k++) {
int s = 0;
for(int x = 1; x <= cnt; x++) s += (x - k) * num[x];
if(!s){ ans++; break; }
}
ans++;
return ans;
} int main() {
for(int j = 0; j <= 9; j++) f[1][1][j][0] = 1;
for(int k = 2; k < maxn; k++)
for(int j = 0; j <= 9; j++) f[k][1][j][(k-1)*j] = 1;
for(int k = 1; k < maxn; k++)
for(int i = 1; i < maxn - 1; i++)
for(int j = 0; j <= 9; j++)
for(int s = 0; s < maxs; s++) if(f[k][i][j][s]) {
for(int x = 0; x <= 9 && s + (k - i - 1) * x >= 0; x++)
if(s + (k - i - 1) * x < maxs) f[k][i+1][x][s+(k-i-1)*x] += f[k][i][j][s];
// printf("%d %d %d %d: %lld\n", k, i, j, s, f[k][i][j][s]);
}
int T = read();
while(T--) {
LL l = read(), r = read();
LL ans = sum(r); if(l) ans -= sum(l - 1);
printf("%lld\n", ans);
} return 0;
}

[HDU3709]Balanced Number的更多相关文章

  1. HDU3709 Balanced Number —— 数位DP

    题目链接:https://vjudge.net/problem/HDU-3709 Balanced Number Time Limit: 10000/5000 MS (Java/Others)     ...

  2. hdu3709 Balanced Number (数位dp+bfs)

    Balanced Number Problem Description A balanced number is a non-negative integer that can be balanced ...

  3. HDU3709 Balanced Number (数位dp)

     Balanced Number Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Descript ...

  4. [暑假集训--数位dp]hdu3709 Balanced Number

    A balanced number is a non-negative integer that can be balanced if a pivot is placed at some digit. ...

  5. hdu3709 Balanced Number 树形dp

    A balanced number is a non-negative integer that can be balanced if a pivot is placed at some digit. ...

  6. hdu3709 Balanced Number 数位DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3709 题目大意就是求给定区间内的平衡数的个数 要明白一点:对于一个给定的数,假设其位数为n,那么可以有 ...

  7. HDU3709 Balanced Number 题解 数位DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3709 题目大意: 求区间 \([x, y]\) 范围内"平衡数"的数量. 所谓平衡 ...

  8. HDU3709:Balanced Number(数位DP+记忆化DFS)

    Problem Description A balanced number is a non-negative integer that can be balanced if a pivot is p ...

  9. HDU - 3709 - Balanced Number(数位DP)

    链接: https://vjudge.net/problem/HDU-3709 题意: A balanced number is a non-negative integer that can be ...

随机推荐

  1. 从.o文件中提取指定开头依赖于外部接口的脚本

    nm -g audio_la-audio.o | grep " U " | awk '{ print $2}' | grep "^gst_"

  2. php 设计模式 例子

    加载类:include("./Ren.class.php");include "./Ren.class.php"; require("./Ren.cl ...

  3. spring boot properties

    [转载] 代码从开发到测试要经过各种环境,开发环境,测试环境,demo环境,线上环境,各种环境的配置都不一样,同时要方便各种角色如运维,接口测试, 功能测试,全链路测试的配置,hardcode 肯定不 ...

  4. shell操作mysql之增删改查

    假设mysql用户名root 密码123456,新建测试数据表utable 脚本如下: #!/bin/bash#mysqlop.shmysql="/app/local/mysql/bin/m ...

  5. easyUI datagrid view扩展

    //扩展easyuidatagrid无数据时显示界面 var emptyView = $.extend({}, $.fn.datagrid.defaults.view, { onAfterRender ...

  6. 表单提交set集合问题

    提交时使用数组接收,遍历将数组添加到set集合 用户表user 字段id,name,set<xk> xks=new HashSet<xk>(); 选课表xk 字段id,name ...

  7. 安卓官方ViewPager与android.support.design.widget.TabLayout双向交互联动切换 。

    该TabLayout的功用,简单的说,就是当用户在该TabLayout的选项卡子item中选择触摸时候,文字和下方的指示器横条滑动指示.android.support.design.widget.Ta ...

  8. 解决问题--VS2012中一个Panel覆盖另一个Panel时拖动时容易造成两个控件成父子关系的避免

    在*.Designer.cs中,假如想把panel1覆盖到panel2上,但是VS自动让panel1成为panel2的子控件了,在文件中会有this.panel2.Controls.Add(this. ...

  9. ecshop 默认图处理

    function get_banner_path($img) { $img = empty($img) ? C('no_picture') : $img; return $img;}

  10. $().index() 两种用法

    第一种:获得第一个 p 元素的名称和值: $(this).index() <script type="text/javascript"> $(document).rea ...