快速幂+等比数列求和。。。。

Sumdiv

Time Limit: 1000MS Memory Limit: 30000K
Total Submissions: 12599 Accepted: 3057

Description

Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).

Input

The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.

Output

The only line of the output will contain S modulo 9901.

Sample Input

2 3

Sample Output

15

Hint

2^3 = 8. 
The natural divisors of 8 are: 1,2,4,8. Their sum is 15. 
15 modulo 9901 is 15 (that should be output). 

Source

#include <iostream>
#include <cstdio>
#include <cstring>

using namespace std;
const int MOD=9901;
typedef long long int LL;

int p[10000],n[10000],k,A,B;

LL power(LL p,LL n)  ///p^n
{
    LL ans=1;
    while(n>0)
    {
        if(n&1)
            ans=(ans*p)%MOD;
        n>>=1;
        p=(p*p)%MOD;
    }
    return ans%MOD;
}

LL Spower(LL p,LL n) ///1+p^1+p^2+p^3+....+p^n-1+p^n
{
    if(n==0) return 1;
    if(n&1)
        return ((Spower(p,n/2)%MOD)*((1+power(p,n/2+1))%MOD))%MOD;
    else
        return (((Spower(p,n/2-1)%MOD)*(1+power(p,n/2+1))%MOD)%MOD+power(p,n/2)%MOD)%MOD;
}

int main()
{

while(scanf("%d%d",&A,&B)!=EOF)
    {
        k=0;
        for(int i=2;i*i<=A;)
        {
            if(A%i==0) p[k]=i,n[k]=0,k++;
            while(A%i==0)
            {
                n[k-1]++;
                A/=i;
            }
            if(i==2) i++;
            else i+=2;
        }
        if(A!=1)
        {
            p[k]=A;
            n[k++]=1;
        }
        LL ans=1;
        for(int i=0;i<k;i++)
        {
            ans=(ans*Spower(p,B*n))%MOD;
        }
        printf("%I64d\n",ans);
    }
    return 0;
}

* This source code was highlighted by YcdoiT. ( style: Codeblocks )

POJ 1845 Sumdiv的更多相关文章

  1. poj 1845 POJ 1845 Sumdiv 数学模板

    筛选法+求一个整数的分解+快速模幂运算+递归求计算1+p+p^2+````+p^nPOJ 1845 Sumdiv求A^B的所有约数之和%9901 */#include<stdio.h>#i ...

  2. poj 1845 Sumdiv 约数和定理

    Sumdiv 题目连接: http://poj.org/problem?id=1845 Description Consider two natural numbers A and B. Let S ...

  3. POJ 1845 Sumdiv 【二分 || 逆元】

    任意门:http://poj.org/problem?id=1845. Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions ...

  4. POJ 1845 Sumdiv#质因数分解+二分

    题目链接:http://poj.org/problem?id=1845 关于质因数分解,模板见:http://www.cnblogs.com/atmacmer/p/5285810.html 二分法思想 ...

  5. poj 1845 Sumdiv (等比求和+逆元)

    题目链接:http://poj.org/problem?id=1845 题目大意:给出两个自然数a,b,求a^b的所有自然数因子的和模上9901 (0 <= a,b <= 50000000 ...

  6. POJ 1845 Sumdiv [素数分解 快速幂取模 二分求和等比数列]

    传送门:http://poj.org/problem?id=1845 大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题基础: 1) 整数的唯一分解定理: 任意正整数都有 ...

  7. POJ 1845 Sumdiv(逆元)

    题目链接:Sumdiv 题意:给定两个自然数A,B,定义S为A^B所有的自然因子的和,求出S mod 9901的值. 题解:了解下以下知识点   1.整数的唯一分解定理 任意正整数都有且只有唯一的方式 ...

  8. POJ 1845 Sumdiv (整数唯一分解定理)

    题目链接 Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 25841   Accepted: 6382 Desc ...

  9. POJ 1845 Sumdiv 【逆元】

    题意:求A^B的所有因子之和 很容易知道,先把分解得到,那么得到,那么 的所有因子和的表达式如下 第一种做法是分治求等比数列的和  用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n: ...

随机推荐

  1. Myeclipse的show in breadcrumb

    m如何取消eclipse的show in breadcrumb 不小心点了show in breadcrumb,在编辑器界面上面多一层路径条,多余碍事,不晓得怎么取消,搞了半天终于弄好,方法如下: 点 ...

  2. RabbitMQ 异常与任务分发

    异常情况处理 上篇最后提到了这个问题, consumer异常退出.queue出错.甚至rabbitMQ崩溃.因为它们都是软件 ,软件都会有bug,这是无法避免的.所以RabbitMQ在设计的时候也想到 ...

  3. iOS - 利用runtime加深对基础知识的理解

    利用runtime加深对基础知识的理解 如果对runtime需要学习,可以看这篇,以下仅作为学习笔记,相互交流. runtime的头文件: #import <objc/runtime.h> ...

  4. 9 HTML&JS等前端知识系列之Ajax post请求带有token向Django请求

    我们 在母板上写入这段代码: <script type="text/javascript"> // 个人定义大函数,不是重点,可以忽略 $(document).read ...

  5. django rest framework

    Django-Rest-Framework 教程: 4. 验证和权限 作者: Desmond Chen, 发布日期: 2014-06-01, 修改日期: 2014-06-02 到目前为止, 我们的AP ...

  6. Saltstack 介绍、安装、配置(一)

    Slatstack 介绍 官网:https://saltstack.com/ 官方源:http://repo.saltstack.com/  (介绍各操作系统安装方法) http://repo.sal ...

  7. BZOJ4668: 冷战

    并查集,按秩合并,树高log,暴力查询. 果然bzoj新挂的题中过的人多的全是sb题. 写了一发秒WA,发现姿势不对.(@_@) 然后过了50min,开始怀疑人生.(*_*) 这么长时间我lct都写完 ...

  8. js JS 浮点计算BUG

    Number.prototype.toRound = function(d) { var s=this+"";if(!d)d=0; if(s.indexOf(".&quo ...

  9. restClient访问SSL

    IRestClient client = new RestClient("https://xxx.com/aa/bb"); "; ); ServicePointManag ...

  10. html img src base64

    网页上有些图片的src或css背景图片的url后面跟了一大串字符,比如:data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAAAEAAAAkCAYAAABId ...