结论

我直接抛出结论:

Gimbal Lock 产生的原因不是欧拉角也不是旋转顺序,而是我們的思维方式和程序的执行逻辑没有对应,也就是说是我们的观念导致这个情况的发生。

他人解释

首先我们看一下欧拉角的定义:

用一句话说,欧拉角就是物体绕坐标系三个坐标轴(x,y,z轴)的旋转角度。

在这里,坐标系可以是世界坐标系,也可以是物体坐标系,旋转顺序也是任意的,可以是xyz,xzy,yxz,zxy,yzx,zyx中的任何一种,甚至可以是xyx,xyy,xzz,zxz等等等等。。。。。。所以说欧拉角多种多样。欧拉角可分为两种情况:

1,静态:即绕世界坐标系三个轴的旋转,由于物体旋转过程中坐标轴保持静止,所以称为静态。

2,动态:即绕物体坐标系三个轴的旋转,由于物体旋转过程中坐标轴随着物体做相同的转动,所以称为动态。

网上的文章,一般都是这样解释的:

是指物体的两个旋转轴指向同一个方向。实际上,当两个旋转轴平行时,我们就说万向节锁现象发生了,换句话说,绕一个轴旋转可能会覆盖住另一个轴的旋转,从而失去一维自由度

通常说来,万向节锁发生在使用Eular Angles(欧拉角)的旋转操作中,原因是Eular Angles按照一定的顺序依次独立地绕轴旋转。让我们想象一个具体的旋转场景,首先物体先绕转X轴旋转,然后再绕Y轴,最后绕Z轴选择,从而完成一个旋转操作(飘飘白云译注:实际是想绕某一个轴旋转,然而Eular Angle将这个旋转分成三个独立的步骤进行),当你绕Y轴旋转90度之后万向节锁的问题就出现了,因为X轴已经被求值了,它不再随同其他两个轴旋转,这样X轴与Z轴就指向同一个方向(它们相当于同一个轴了)。

看得懂吗?我是看不太懂~

我的理解

我们先来考虑一下,旋转到底是怎么个旋转法。

静态的情况很好理解,怎么旋转都不会有问题,万向节的问题是不会出现在静态的旋转过程中的。但是你想像一下动态的旋转,动态的旋转,这里会有两个坐标系,看清楚了,两个坐标系!

  1. 世界坐标系
  2. 物体坐标系

那么这两者是什么关系呢?

一开始,这两个坐标系是重合的,但是旋转开始以后,世界坐标系不会变化,物体坐标系随着旋转就发生变化了。

亲爱的读者,你们先想想,这两个坐标系的关系,你们觉得物体旋转是绕着那个坐标系旋转的?

你会说:

你刚刚不是说了嘛!是绕着物体的坐标系旋转的!

对,没有错,那么在物体旋转的时候,物体的坐标系是不是一直在变化呢?是的!那么我們在给他旋转的参数的时候考虑到这个问题了吗?没有!

就是说我给他的旋转的参数是基于一种假设:每一次旋转都是以物体的坐标系为参考来进行的。就是说我是希望它每一次旋转前,都能够将旋转参数在物体坐标系上进行计算。很简单,一架飞机,作为机长,每次旋转以后他跟着飞机旋转了,后面的旋转操作自然是基于新的物体坐标系来的。

但是实际上,程序解析我给的数据的时候,只是简单地将三个轴的旋转一个个的相乘,也就是说,总的来说还是在最开始的那个坐标系(也就是一直不动的世界坐标系)下面计算的。而且需要注意的是: 每一次进行计算的顺序是确定不变的! 这也是为什么有人会说万向节问题是因为旋转顺序导致的樂。

看一下在OpenGL 实现旋转的代码:

void configRotateTrans(GLfloat radX, GLfloat radY, GLfloat radZ) {
GLfloat xTrans[4][4] = {0};
GLfloat yTrans[4][4] = {0};
GLfloat zTrans[4][4] = {0};
GLfloat tempMatrix[4][4] = {0}; xTrans[3][3] = 1;
xTrans[0][0] = 1;
xTrans[1][1] = cosf(radX);
xTrans[1][2] = -sinf(radX);
xTrans[2][2] = cosf(radX);
xTrans[2][1] = sinf(radX); yTrans[3][3] = 1;
yTrans[0][0] = cosf(radY);
yTrans[0][2] = sinf(radY);
yTrans[2][2] = cosf(radY);
yTrans[2][0] = -sinf(radY);
yTrans[1][1] = 1; zTrans[3][3] = 1;
zTrans[2][2] = 1;
zTrans[0][0] = cosf(radZ);
zTrans[0][1] = -sinf(radZ);
zTrans[1][0] = sinf(radZ);
zTrans[1][1] = cosf(radZ); // Multiply the 3 matrix
// rotateTrans = xTrans * yTrans * zTrans
multiMatrix(xTrans, yTrans, tempMatrix);
multiMatrix(tempMatrix, zTrans, rotateTrans);

看懂了吗,物体最终在哪个位置是简单粗暴地将绕xyz三个旋转的矩阵连续相乘得到的,计算的顺序是x->y->z,那么比如用户先输入绕y轴转90度,再输入绕x轴转90度。其实程序执行的时候,还是会先将x轴的数据进行计算,再计算y轴的数据。但是如果用户先输入绕y轴转90度,再输入绕z轴转90度,程序还是按照x-y-z的顺序来,只是正好用户也是这样输入。

现在我們明确了两点:

  1. 物体的旋转是以世界坐标系为参考的。
  2. 物体旋转的顺序是确定的,和用户输入的旋转的顺序无关。

那么还是刚刚那两种情况:

操作A:

用户第一次输入: 绕Y轴转90度,第二次输入:绕X轴转90度。

实际程序运行:先繞X轴转90度,再绕Y轴转90度。

操作B:

用户第一次输入: 绕Y轴转90度,第二次输入:绕Z轴转90度。

实际程序运行:先繞Y轴转90度,再绕Z轴转90度。

现在发挥一下想象力,当物体绕Y轴转动90度以后,物体坐标系的X轴和世界坐标系的Z轴是不是变成了同一个轴?好的,那么这个时候,用户无论输入的是绕X轴转还是绕Z轴转,最终物体转动是不是都是绕着这个轴(世界Z轴/物体X轴)。上面的操作A和操作B的结果是一样的!

这就是Gimbal Lock,这并不是什么缺陷,陷阱,而是我們的思维方式是错误的,所以导致这个问题的出现。

参考资料:GimbalLock万向节锁与四元数旋转

万向节锁(Gimbal Lock)的理解的更多相关文章

  1. 使用四元数解决万向节锁(Gimbal Lock)问题

    问题 使用四元数可以解决万向节锁的问题,但是我在实际使用中出现问题:我设计了一个程序,显示一个三维物体,用户可以输入绕zyx三个轴进行旋转的指令,物体进行相应的转动. 由于用户输入的是绕三个轴旋转的角 ...

  2. 万向节死锁 gimbal lock

    ,如下图一,把灰色箭头想象成是一架飞机,红,绿蓝三个圈看作是三个外围控制器,外圈带动所有里圈运动,里圈的运动不影响外圈. 1,首先,绕Y轴旋转(旋转绿圈),来确定前进的方向.这时红圈与蓝圈都跟着旋转. ...

  3. Gimbal Lock欧拉角死锁问题

    技术背景 在前面几篇跟SETTLE约束算法相关的文章(1, 2, 3)中,都涉及到了大量的向量旋转的问题--通过一个旋转矩阵,给定三个空间上的欧拉角\(\alpha, \beta, \gamma\), ...

  4. Gimbal Lock

    [Gimbal Lock] 万向锁源于欧拉角的是有序处理的.U3D中的序列为: y->x->z.当旋转y时,local坐标系与世界坐标系重合,所以y等于永远按惯性坐标旋转.当x旋转+/-9 ...

  5. 【转】锁(lock)知识及锁应用

    sql server锁(lock)知识及锁应用转自:http://blog.csdn.net/huwei2003/article/details/4047191 关键词:锁提示,锁应用 提示:这里所摘 ...

  6. volatile和synchronized与lock的理解

    volatile 特征: a:可见性:一个线程修改了某个共享变量的值,其他线程能够立马得知这个修改. b:禁止特定的处理器重排序. volatile的内存语义: 1.当写一个volatile变量的时候 ...

  7. Python3学习之路~9.3 GIL、线程锁之Lock\Rlock\信号量、Event

    一 Python GIL(Global Interpreter Lock) 全局解释器锁 如果一个主机是单核,此时同时启动10个线程,由于CPU执行了上下文的切换,让我们宏观上看上去它们是并行的,但实 ...

  8. java里的锁总结(synchronized隐式锁、Lock显式锁、volatile、CAS)

    一.介绍 首先, java 的锁分为两类: 第一类是 synchronized 同步关键字,这个关键字属于隐式的锁,是 jvm 层面实现,使用的时候看不见: 第二类是在 jdk5 后增加的 Lock ...

  9. java面试-公平锁/非公平锁/可重入锁/递归锁/自旋锁谈谈你的理解

    一.公平锁/非公平锁/可重入锁/递归锁/自旋锁谈谈你的理解 公平锁:多个线程按照申请的顺序来获取锁. 非公平锁:多个线程获取锁的先后顺序与申请锁的顺序无关.[ReentrantLock 默认非公平.s ...

随机推荐

  1. 23种设计模式--代理模式-Proxy

    一.代理模式的介绍       代理模式我们脑袋里出现第一个词语就是代购,其实就是这样通过一个中间层这个中间成是属于什么都干什么都买得,俗称"百晓生",在平时得开发中我们经常会听到 ...

  2. HTML骨架结构

    前面的话   一个完整的HTML文档必须包含3个部分:文档声明.文档头部和文档主体.而正是它们构成了HTML的骨架结构.前面已经分别介绍过文档声明和文档头部,本文将详细介绍构成HTML骨架结构的基础元 ...

  3. 前端学HTTP之实体和编码

    前面的话 每天都有各种媒体对象经由HTTP传送,如图像.文本.影片以及软件程序等.HTTP要确保它的报文被正确传送,识别.提取以及适当处理.为了实现这些目标,HTTP使用了完善的标签来描述承载内容的实 ...

  4. .net 分布式架构之业务消息队列

    开源QQ群: .net 开源基础服务  238543768 开源地址: http://git.oschina.net/chejiangyi/Dyd.BusinessMQ ## 业务消息队列 ##业务消 ...

  5. 【NLP】揭秘马尔可夫模型神秘面纱系列文章(一)

    初识马尔可夫和马尔可夫链 作者:白宁超 2016年7月10日20:34:20 摘要:最早接触马尔可夫模型的定义源于吴军先生<数学之美>一书,起初觉得深奥难懂且无什么用场.直到学习自然语言处 ...

  6. Android 调用百度地图API

    一.到 百度地图开发平台下载SDK http://lbsyun.baidu.com/index.php?title=androidsdk/sdkandev-download 1.点击自定义下载 2.下 ...

  7. Mysql 学习之基础操作

    一.表复制 1.复制表结构    将表hello的结构复制一份为表hello3 2.复制数据 a.如果两张表的结构一样且你要复制所有列的数据 mysql> insert into hello3 ...

  8. MemoryMappedFile 在 Mono in Linux 的开发笔记

    前言 MemoryMappedFile(简称MMF)类是.NET中对内存映射文件进行操作的类,内存映射文件是非常高效的本地IO方案,由操作系统提供内存与IO文件之间的映射转换,对内存映射文件的更改由操 ...

  9. Webpack+React+ES6开发模式入门指南

    React无疑是今年最火的前端框架,github上的star直逼30,000,基于React的React Native的star也直逼20,000.有了React,组件化似乎不再步履蹒跚,有了Reac ...

  10. android-解决全屏-webview-输入框被输入法挡住-FullScreen-adjustResize失效问题

    由于公司开发的 App 中,Html 的页面嵌入的有点多,坑爹的是,还有很多输入框,这就算了,还要求全屏.然后就出现了这个情况. 下面来唠叨唠叨具体的来龙去脉. 起初是这样的,整个项目基本完工了.测试 ...