NYOJ题目101两点距离
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsEAAAIBCAIAAAAnO/WXAAAgAElEQVR4nO3dq3IbSeM34L0Jc/O9BWPdQdCfxSVi5ivIAhEZmYe4Siz1EQOnTMUXpCoviJlY4F6CPjAHdc90z6EtOT48T+Wtdy3N+dS/6W7N/LUHAJjvrz+9AADAmyRDAAAlZAgAoIQMAQCUkCEAgBIyBABQQoYAAErIEABACRkCACghQwAAJWQIAKCEDAEf0e/bi+vzs+vzyx8vOruzu4cXmR/wImQIeDPaknj6v/Xtr4JJNSX9r8dF/6v7u8ERf1zNW8Lr87Prq/sX3IrA0cgQ8GbIEMCrIkPAW1WX1k0BXP2ZCw0d09oy6gxx9xD+d50hprVKVGNdPD41HzzdrIUGeC9kCHir3kCGeLr/8dSrzFjc/H64/7GvphPEC+CtkSHgDUk0LkxsI5jcxBCmiqEMkfi3uPldjVdVNpxfPN5e5ls9ZAh482QIeEP+TIaY2h+inyGe7u96LRc/rqq5yBDw5skQ8IY0hfrVffvfTeNF9GenmePwSVvM9zQhY2qGCNsy6paRboaY8k+GgDdMhoA3JMwQTX1AHRSiov1IGaLxcBmMK0MANRkC3pAgQ4TldPjn1f3+WBmi/Q3F3AyRm7ifY8D7IkPAG3LIEPEDHi7urg5/rm9/ZTPErP4QnQwRdnEY7A8x7xER+eQBvHIyBLwhbYa4bBsyft9e3D1k+lrKEMApyRDwhnSzQt2gUJfxvQL+mW0Hk9syOqJakHrZqmgS/RZjtAUEeOVkCHhD4gwRF+pVmf379uL6/PKu25bx63ERDhD3xAzrD8IS/QgZojtw+GwrGQLeOhkC3pAmQywu1p2fcR5+4HD/2O8P0TRGBO+zCErxqowPhqkl2jIOzShTMsRQo8bi5ocMAW+cDAFvyKFP5Y+roOPCw2XcbBH+BDT4M65IWN/+6nzV+e1GOgG0XTFS/7pPp0j9yHN9dbk+P1tf3csQ8NbJEPCGdMJBX9QfoirRm8qGw5MY+v0V1lf3v/eH5zpUdQydn3609RwzMkRK95WhfvAJb5YMAW/IaIYIOkwE9/e/by+mFdV1t4nfT5Ne3JUz8jSIqHLCM6bgDZMhAIASMgQAUEKGAABKyBAAQAkZAgAoIUMAACVkCACghAwBAJSQIQCAEjIEr952tVhudu2fu82y+Xu7WqQsN7tqsNZqG/3ZftpOcLXd7zbLcDbh7OsBP4Dylc1tvu7kcwNN3197uwxeCxmCVyDOAt1iIVHwDJdFbYZYbdsP2j+DSVR/N990C6RmgIICKX5D9/nh5VjRezIHPxz4/JROmyF6OyH13dj+2p9kl1WCHXd1v0+8dezi8Sn9YW6nZwYObVdhPKpOhuVm10vI4xENXpwMwSsQRIKxwDBaPHQzRD1C9r429UVzCS8tkO7vgndV/LgK3orZvEKi/e/khwP/fWIzVjZTCdQt85LbN2PK/spN8pm7rH6LR/XOsFZyy2d2x/hOH9iQzeJuV4f1jLPFdiVF8ArJELwC3QyxybdRRNUHqSImzhDtnWruvvYw67k3tbvNctpV/eHy+vzyx/7+LrwHfbpZZz/c77Ofd7baYrVpN0NVt98pbqOSfkK5Oi9DhGvfb3GaUXm0n7y/9ifaZfXLxjqfzskQsXqnz8oQu82ymxri5hstNLw6MgSvQEk9RKf86H2+2yyrEjZuseiNsNvVEzlRhri/q+5um0Il/PzuKvXhwz49cLdFo630bhYm+qNZ9uDufTUeeIozRHf79jJENUC+B8vU/bU/yS57ulmn3iBamiGanT4nQ/QqGqIMEfQCgldEhuAV6PWHiEqQbIaYUA8xUjeer2hfbjbPbFyv33DdlEynyRBRfUOvwJlf8JRmiCjD1B90O8ImJhyM9qy2p2fvsofL6/OLddChodracW+GZBeHuH6os9OHBz5syMVy2a9l6OYtlRC8QjIEr0CiHiIodJ5RD3EoUOo/o9IlLmqO3kGv8utxcXa9uPn9JzLEocCdmiTKMkQ9v/A2P9qayfv/sOl/X7C/ujPZP2eXPVxGvR07f+73+zoNdENA8sPDTp80cFWftFx2Y4K2DN4AGYJXIN2WEZQIz8wQQc1GmFGyN7yLsPh69g8Fq3ry2z+RIdq/pgaJ+Rmimnrc/yL+2eV2tVgul/luLp077ZH9tT/JLutu8F+Pi27/ynR7R6YRZM7Aza7rJq3O7zV6f8MrIEPwChT2h0iVQFGGCL441GvUVcThPXTwm8LDJ0fLEPVN7Wn6VE7IEPnP+gp+l9GbaNOzofqimuLYbp2+v/Yn2WXd0v3QoSE/TP7DfbomYyRD7Dt5rJMZVETwGskQvAK9/hDdb8frIVq9eoj247a5fdUtb5MFUjD7mR30Hi6DbnSHDv/H/m3nlP4Qq3DDTSiByn+X0dGvJpqQIabsr/1Jdlnwa8x9/WSOyx9PN+tDe0TTPJH8cJ/Z6bmBuxuiU4/Tpq/OrzRECF4dGYJXoKQeYmxaiTIpCCiHK3JcINXV7YnCrGegQLq/Cx8rFBb/D5eJx0YlPxz4/LCmY/UQYTib1CXiVWWI5P7an2aX7fdR/8e2Nqi/H3M7d9bAnQ3RX/PlZtfpU+lXGbxGMgSvVXAJjRuJk8VDb+j+rWmqdj/utBYNkXjYwvv37Axx2A/d3o5h41FiiNn7a2+XwR8nQwCtZ3f+AD4SGQJoyRDADDIEAFBChgAASsgQAEAJGQIAKCFDAAAlZAgAoIQMAQCUkCHgvauf+Tjh2Q9eygDMIUPA+xK+ZqHz7vT+e7c672RIKssUD5ep90sB74oMAe9UXe+QjgmHVFFHhM4LKp7xwMrmVWEyBLx7MgS8L9tV+9Kx5uWPdRpIvC69ebX2gNT7IkdegLmvXp8tQ8B7J0PAO1NHhToepCNC8Kr1knoIGQLY72UIeIcO8WG1DdJAph6izRBH6QdRkyHgI5Ah4P0J6wkmZogjkyHgI5Ah4B0KfoGR7FNZZ4ndZrlYbfM/zijPFzIEfAQyBLw/VSqogsJQPUT0s8/ou+1qpMPDCBkCPgIZAt6bKg9UdQyDGSIODrvNcrHc7CZ0mNSnEtjv9zIEvDdNdoh+3ZlspujUPew2y6mNGIMZon0+RPXv6v6IKwe8KjIEvCu9XpLZbpPVF4eI0flp53F+nwG8ZzIEAFBChgAASsgQAEAJGQIAKCFDAAAlZAgAoIQMAQCUkCEAgBIyBABQQoYAAErIEABACRkCACghQwAAJWQIAKCEDAEAlJAhAIASMgQAUEKGAABKyBAAQAkZAgAoIUMAACVkCACghAwBAJSQIQCAErkMcX93fnZ9fvmj+fvH1dn1+dndQ/e/9/v9/ulmHQzZn8KPq2BgAOBdeH6GqIY8u766T0/h4fL6/Oz6/Gx9++skawAA/AmjGeLX4+KsCgHpf1f3+6eb9XlcMxFNoaqokCEA4F1JZIiqmqH5d/H4dPgw3Zax3/++vbi+uv/9dHM3kDaaSQEA78Ax+kOkNEGk308CAHgPpmaInKDSIhi4ad2o+kNoxQCA92c8Q/y+vRhrnkhVWiwu1sGQfpcBAO/M1AxR1SUErRhVX8tUhni4vD4/u3vo/C5DZwgAeFeGM8TZ9fnF3dWsDNH+d68mY3Hz+6XWCgA4tX6GCH/MObceoh737mEfB4tmmt1nSAAAb9Ux+0PcVf0r6/qGuIHj6WatHgIA3pEj94f4cdX2e5j6yw4A4C06QZ/K3hQAgPfnCBkiaOyQGADgo8hkiOohUYub36P9IW4v24QxOKQ+lQDwriQyRBsFqgdDhfUQgboe4u72ci0ZAMDHk2vLAAAYIkMAACVkCACghAwBAJSQIQCAEjIEAFBChgAASsgQAEAJGQIAKCFDAAAlZAgAoIQMAQCUyGWI//3z99///C/+7Nunv/7669O35MB/9YbujDdBatLfPg1NuTtoagrRRP73z98TZxwu+8D3L+3bp2ctzqtanQnrUu2v17LAlPv26a+/hi8SqS//98/f0y4LA5eg1Ffd8Wdd7gYWIxz12Fe8YD0y0z+M199uqclGV8O///lf+urYX5r//fP34L7kQ8lkiP4xWH2SO6enl21BSZ86cVPTHTiqwzMjnnK4NDOCSCS5tokT6Nun+JPBy0Bi3Amn+8hCTTJ3deJLSmKew6szOvrouiSu/u1ET54rSg6aCat85Jk+e45zFia58XN7pP/58K1G8tvkAdK/Jvz9d6/wGzhD+9eq6Ze7eJvEf2WO5mNe8QaOj3DayeXuL9phsGrk3OmYzhZ9sv6HlMgQnYP407fe8Zk8jCeWbfPPqOHyNMoTzZTb/0ysy3TZeceZIbwktfMbONPDxehcOEdHH16uI69OeGuYuSkbWp0Jow+vS+9a393SJ7pmTdsL6TEnrPJRZ/qMOc5cmOTGz+2RzH+P7LR+QZcsDKulim/LD6d7Z3uM6caPkcvdi2SI1DD5WtbD3Nvtklihzlr/87/99AwRzaRb3SE5fHTpeojogO2din9/+pQ6FQYuYROC7ORTv3NGH+bYLnT3VBhpaskYPKHCgjZ5BzZ8vxXeqSdrBoYXd8qlKDXbstUZXqrR1RkePb8u/TEmXbGH1iExXHyX3Lk85jby4IgDK5DcROFg+ZmOjDi+zPNTVzy15MbP7ZHsnpp7KmZ28vD1JHlGdS4I0ULMuNxNzRBHv+JFV7fU+gYZonNflV39VFtG7gjp7MRoFcqrRnkHkhni26e/Pn2rDtpc/O2n5W+f/vr773xBkSjfD0d797gfujWNLvN/f/rUuxtpzsjodK6GyZ6sQ/V82SWpNtL8ENDcLWUu6hOus/NrIp6xOvFC578ZLKMGR89lk359dDj9/vya3Tt52xyWqje78fI4M2JimKFPo7UYCy7ZEYfmOH+zJBYmufE/ZfbIwJ5Kr+GhVKouOWPl7kCITl2wRjLEnMvdWN1GvzX1SFe8MEP0Fj78vDfl3kU5yhBhxEgFn3iFqtWP4/NACzcfQSpDxKdTcNaEx07noK+vDQP3Df0z4HDCFmWI+r/bq1K72HE1ay81d5YoY7yY7pxPvW0xOurMO/7OIEdql+ks00A1wnCjw8DIw6Pna4ATCSFdMrW7uD+d9DU/vgX8+59v6Y4X40EwMeLYKvdu7/NNW9NHTM7xGZulN79jZYihpJk4El6iHqLkcncYdaAe4qhXvGfUQ0Qz7s8uHXc6yztasSJDfFiJDNGp4frnU5vA21Otd1JFleHp+4xP39ppB5E+ka2ntWX0T83gduIwpU+fqv/9/c//2qGa5FEF6MzZe9IMMVqovq4MMZwgRgcY/zadIfoVXamSKW5YmK9a797iTQ2CMxNEPOXuTIZnOjBif47P3SynyhADh+6sDDFaDzGhNSF1cRm+3HXqKbKl8fGveHPqIaKx+xVA7ShVZ5pmhCoR5zJEbyvPrNXi3co/HyIdzJMZIj7TE8dXM0D11f/++bs5Xuva14FrQnbpeiNkajGr9BBce9tTO3W5C6c2uEjfytsyDqMnv/ojGSK/OqMB4jB6blFH88dzMkTzn9kENOL4GWJ0lcMqsmiRp1R+pEbMzPE5m+W1Z4iBMjdzFcj/XS/jhMvd7AxxtCtecVtGVMsVx5FDhsjHrs4ZNpJ0+IAGM8Rff/3116dPY/UQ37qtsOmbpE/fgjMuuKr8r+rV0I4Q5ulu1UavEnLsqP726XAiR7PthYmu4WI6qndJXfhOmyHm3wYUrs6kANEfbc7omXVJTDFfcxyM07mcTWnLSNZHTSvOx+sDRkbuN0dMiHrxiJMiy8zN0l+Y5MbP7ZGBPXWUtoz2y9FokJxIJkNMuNzNzBBHvOI9ry2ju6r5DJGphzj8Vzv98PhQL/GBDf62c0Iw/98/yb74qaIoahPtXa76R2PykpStXRv6Kmi/aKYTnC6Z43+4vvQwq/4WyBQs2Vuz/ozH74AzS/zX0FTnrk66Ojw5l9TqTKtNz119UlshnMvABhz4KjvkxCDcj1rRiJO3WH1CpOrrOoXvyIjTNnJnZafpLExy4+f2SHZPxRONV7A9Jw+VjP0MMX5DnIiJ/XyYakg4dj3EUa94uXqI3hRHM0Q4l5EMEa1pd/OEW7pZ3ufVfPEmTWnL6AThfXucDl3Aorujsbr3KNsmblmCUypfFo5liN61bKQ4GqpH7V/XDxUdvTuE1BzS88yMnlyd5OcDW3n26qSu1p++peeSrjVIjT5xXbJR6nhXqc79++FgHtuJU0cc2mK9yoPUTMdHnLaRZ8sdh8mNn9sjqc8Hckl4h508TVMLOal6IdVONdCWkb3c9TdMQlQPkV7waJJTr3gDN0/tuG1txuDhcJj0aH+I/uYZnHncgDO0sLwj0zLEP23Tb3uEfvqUOjt7k8g0/IYDxBfNZMzvnGiZAi6lScdhxeHka+3YhWCqo55T2YUanctRVudl1qWZ1Su6oSle8eSIU9ateMRXq7Pw8QqmqjTTB8i3bBeW+LPcthrLEKnL3ZRN3mvL6A9SfMX7J/+r0+hal6mHiJJFUM0Ybcd+M0l4CR26WezeQ73ZI5T5vHNrUKapZp7RW4h508pMbMpcnr86L7MutfFWnZdTvOLJEacEkuIRX6vu7jzmsQT8GTIEr9hgF483K1nBftIR/7xvn1JVB8AbJ0MAACVkCACghAwBAJSQIQCAEjIEAFBChgAASsgQAEAJGQIAKCFDAAAlZAgAoIQMAQCUkCEAgBIyBABQQoYAAErIEABACRkCACghQwAAJWQIAKCEDAEAlJAhAIASMgQAUEKGAABKZDLEw+X1+dn69lfn4x9XZ9fnZ9fnlz/So/16XCTGAgDen3SG+H17cX1+dvcQf/p0sz6vMkTvq/2+ChD5bwGAdyWRIZrKhubf4ub3fr/f39+dn12fXzw+VEkiWRXRxIh6FADg3UrWQ9zfhTng6dfvJhxU7RRVLUU6RjR1FVo0AOB9G8gQF+vzs+ur+x+3F+vzuGbi8O/i8ak78lDCAADei1SGeLpZn5+try6rDLF/ulmnA8H9XTVAx8OlXhEA8O6lMsTD5fX52d3tTZ0h6p4Qzb+rm8fF2fr2/nGRrmw4dKfQKwIA3q9cn8qm72SbIQ7/MZwhosChKgIA3qvx32Wsb2+mZ4i6M8TVffsfL7MaAMALyz+n8qmgLaMe8u5hf/gtaK/TJQDwDkzOEBPqIeoKjLbuoepcqVcEALxHx8sQ9c8xwoqH6KkSAMB7Mrk/xEhbRtiKEagfOaVFAwDem4J6iKqp4leQIZoOE6kelB45BQDv0vMzxFCAqIy97RMAeHumZ4jLu+ZFGE3Vwtn69le3H2Va8y4uP/UEgPcinyEAAPJkCACghAwBAJSQIQCAEjIEAFBChgAASsgQAEAJGQIAKCFDAAAlZAgAoIQMAQCUkCEAgBK5DLHbLBfLzS78aLvqfjLXbrNcrLb7/Xa16FttD0P15rNdhUOMLupR7DbL7DzbpYpm3NtC7apsV9WUuv9fYmhbfADbVenapw6sw1eJQzKQHLHsjGjOgsEhqgG6J0p4jixW22DIxCSWm12wgPMOxXDo6dsD+HDSGaJ/SV1te1eTuRfyiRf//iW2+mTo0ltergwuxnKZShHJ8ma52aWvxtWH21W1Bevvs5f+SYuVG7VdsD8cMFJFa3LZpn/Ym9aEVcwVf887iuMZFBSl4VGSWsSmYK8Pm8Mc2iNpudkdNkFmIZoQEG6rGYdiL3GkvwU+ulSGqG/so6vTbrOsivGyi8f4Pf1+v+9dU+s7rXaWIzeSRyw621CSTCfNctRbqJp3vzxYbVJpY7XtpZDp2zRfbIULeoJINU27DeKFTC7b9A+T8ymrADhCRdrzgklTZFen0qazHsFRvF2139efpjPEyCE6uOTJQ3EbfrJaqYcABiQyRHSPUl8rtqvmolFSC9+OM+EqHk2/Vy4vV6vMFI5Yw79dLeL01L1iZmoitptNd7sFaxGtVaeGebuKEkdBUIpL1fyAQYEzcaazE0lvgyWXbfqHmXlMKMXGayLKi8Lh8yCzbcNGinq/JzLEYdLbKRliv9/tdsPr2qn4GDoU9/Efg/UQH7xVDcj2hxi7+hZdOKrCKH8v17YHBJWu6cn0L/3b1WK5PEK/iN1m2VzyD2VnshYlVee+XXWv79vVYlHdUDZruNuslstOIquHai/m6fUYjhDRV/1yv9mjUd348Ez7o0zSnVRy2VaTPzxeTUQmeEytXOjkysEzI71tg9HyvQ3qyoGgoiubIZrpJdYqcaxMOxQ7myr8tDdNGQI+vEm/y4gvvvH1a+qVN1cyxkkhTg/BJXawx2Uz8d5Fbt5CRhf+bgkWXS+j1p5um89hGocpVGtUL85q21TrNKPGsxrYVLlyM58h8t0LsjMd6JGQzpa9jqSnzxDjbVfTukNkZjDe7SQXbw8ZIrdDgyM+XQ9x+GZKPUQmGXUS+ORDMVzHQ+IY3enAx/Qy9RDbVfay0739CS9Sm1V4M9Re/JK/2hjsYTZxEft37vEnu81ysVyt2gKhndtuuw1u7w4X6HaszvY6NGF0qzza2RwlQwzeKKZn+vx7y1eSITrq/gVDR0dcsR8VuZ35DpweIxki3of5DBF+fzhaBjJEJy6vVqmDZcKh2Kl9GqyHAD68dIboXNue2RktX/jve9fo6LO4HiI3mfjSVp4iEkuWuWROqd5omyhiYa3MMixZTlUP0S7E9HqI/CiTvMIM0Q4dZYN4DaMpxmV0uGGaA7OoHiI6cJqMlwwhbVY5VHRNqYc4/JHskzPhUIyns9ss03URsgSw32cyxNQycpZ5GWKxWCxWqwn1ENvVon8vd5QUMVCCJQZNz7LbNyJuKWn/mpYhhsrNflV0qjV8kW+rScy0P0pRW0Z62aZ/OGF9h1QHc6cbSG/PdubVCxTxzMrrIYbXIpF1Em1qyQyxXa220Ul2qCQ7VFRMOBT34USrc663rXMRCvhwxvpDNNX3ybuUWaZkiMO1eVo9RLKz46zSf8DIVMIF6ZUpzfV9u90Fgay/okFdwYQiZ2i7h5MYWPJOBcWEmc7emukit7ds0z9ML1NmS0S9FerSsbvdok4rycmlGxXCP8v7QwQ9IXMZIph9W0GTa/TYbZbL5fLQihYelIccMPlQbKd/aOHIZ4jnN3wBb1s+QwT3b8FdSXE1RFlbRrJRNmy4Hajqfm5txLwMMVi4L5pf2rc9Dg5V281HU4rzkRr8eW0QU2c6QydLddsless2/cPefEZbdYLV2zUPbQwrTZoCdbVNHJn9Dd3Nuqmli1tKEtv2sOvT61FPIIwS6T7JnZDRW6m2pWQV/r5pyqHYTr96UkSmSe6wiY/UcAi8TYkM0bnW7p/dHyI1kcE4EmaIqjE26jXWXNdGlum5N0m5DDFQkd25zq46RUYq28wsu/Vrm9/GEXdxHXTYt4P7ZNvvaJk9mDNG2gtTD3TbrsIfSnS6QwS1G6k176aX/KHYPGNqtQl+35mshzhOdR/wlo21ZfDaZNpvPozBkktL/cuZ3iUFeLdkCACghAwBAJSQIQCAEjIEAFBChgAASsgQAEAJGQIAKCFDAAAlUhkieITecrWa/VLM8Al8vaf5TXkCUNGzGI/2xJvdwBN+n/0Ao2c+8fO5m3AXPHowegFl+tlM5Q/FDN7z9Kxt1u7V9JOlEg977L72ITP7gR0x+sa5D/RkpXkHTDj05C03fEoET+vMTLT/QtSk3PtNBg7PofewxUO1M9lkl2O5HH+P4Uc6sng3chmiLkWbx+2nztFV+t3F8QuVd903DY2fQOHlKfuo/p4jZYgTP793PEMMPKG7eUvz5Kc2599P0ryP8fDA5MQ0y3ZEu6idhzHPFz/tObVnEq/Gakq4tmjpvr1twDF3fPHxOHvE+MyasQ7TRpxxwPQSR/rbxBzGniw+kPd67xrrjzEYJfPz7r28NXm8BC83mbTfugvj6fW8bfkMEV5/U+fpfj/9ejfjFVjN1ak6uze5lyP3jMaZiUt55NN5vPBKvXgh95qO3rstp89mscjcC9XveIqGq3f31B0xZe5zt2siA6Xf8DApQ/Qc5RUw+SU/bMbTj9i8ma6dxNRNPT5iMvgnD5ht+En1opjUAZh912o2XQyvzMwMMX4jswheRhZ8sum+MP5wEu7a19YH7zIdWG0ZgvclmyE2nfO6c/pl3saTVJ9vAydwO5H2/qaecu7lyMmZPK9QaC8CRy1e+lez/A1StZ2SNSFxiZp5HdPgMnff9JhuoWqXb9aOSFzqn/XiioGSMF72XFtGIkOM55xZOz1exDmvUksk1XDgoTvjsZlmRh+Z49gCTztgoj+G6yGmNzyE52RykO4bx0YmOX5qh0NE0aN+8Wu/ha4aKno5avdIkCF4x7IZYhU0YTS3GUFrw3C7Z+p6EJxc8WkTnGRhT4zsDE7allEX5Plr0syZTM4Q7TW8lyGCsiK++0lsiShrpK7k9fsbN4d3s+42q+Uy2LPdG7YJO2I4Q8zcMxNak9qXUB69HmLSjWq1Vf5fu6lz5fZQkdy5a46LpPzm2g7ONDHtCXMcGnHyAdMsez9DzCojO7kol+t7n0+vh4guNcG5dLg0BavWP+O7cepwteyOlrtmyBC8LwP9IbbtG36Xq9Xq8NLhuGSZXDyENy+73TY66Xo31bnyZ7SJMi7iZhQJbbjJdyIoMTFDBBf16Prelpb7/ne52/X26thb6sPo1Ve75tXQTa12Z2mn7ojOZTOqtxguE3MGwmlvYomLcDdDTGvqyWSX7EW+Kna3yRUcbWjP7dSx7TU003yb4dAcB0acecC0txyb7PYeWLVq7Gi55tRDTMkQ7UqlK3AWcZZbLuvrYNi6UddHHCZQT3y4imPuhQjejIEMUZ/BzfmYKvWnt2VMPn/iSY5miFzRXlDqbw+3WkeYWjzRAVWlR+oC37/Upy/+9bi9SJFZ6sRmqy+A0daesSOCGTXLExxDz7gspu7Z4oVKbc/ReojtarHcbFZDCxZX10cFaTxU5tX/Zf0AABb0SURBVIgZjgLBt90BxzNXdqbZBDE8x+ER99MOmPimfXY9RP/2vvl4cj3E6GmWnUt3QZab3W6zrIJam/B726c53eIjPXe+J6tdp28feLVmZYhued+cy9kzOFMI9YqndNXCKv3Dj9NkiPZG6+XrIdLXndQMx+v5gyrpfvGdr2bdbaqffLQjzNkR3TbkQxbcPPNXLqnkkqqHCIr7KIimjpColfsQ1uKfE2Wianf+pRnisCd7S1iaIUZyQH6OQyPOOGDqDw+1Aqm6iFykzS3A5AzROUGH6iEG48bhLilIB5ktEVSRRBlitd21v1qJs0hq2WQI3rhchjicJQP1EM3hny55o5MlKmd2u/BKOVRAv2Q9RHcxnz+1/eS2jHiMobUauA6PW2061Qdx9cdAETS0I8LvOgVzUOIUbMBeChrMBPv+sZosLzsr3S/aOmP1jrngwO3VIu0Tw+XWbRH8+GnyiMmZjgaI3BxHR+zWNw0eMFGJ3tt5/ZMoH8G6o4y0ZXRP28G2jNQSj657qgqqu2h1zUxTddFuguGLlgzB2zZUD9H+EVyXwwr/8I5uLENMaM/o3SlUs3sDGWKg2H+ZDNHTbd1tPt5ud8HluNtGnGwlH90Rvf18qP9NDjJ1dRLfpj/Ktb/0SoG2lrozSLduYTi4bNtfqgRpKVUt0C3k+2VHogQdHjE1014b1tQ5pkeMxp13wEQtHEMZopnk2LGcq4dIzDGa1EtniGi7dH/ZGj6nL5EQEwuXPhvhVRrJEHEzZ+xwok5py8gLT89uy+NohpiSSWYoyhAjWWbEcTNEUOyHcw9Gau69V82mPmzzoDydvCOaq2I7q6qcbjuf5euphrZb+v64V1jvNtGvU7L3eMF2q5YljML7sExLLGp/MberxfL/evUZmWrvNlGlKlASLSP5ETsj1DPN1LKPzzFfPR+PO+2AabftNtjmycnXR0yvASlh9E5gu1p02wraj4+dITIbq58hurk5PArTYS930E66fsIfNZgh2v/IlITBxW2sHqInmGR6qKGEUI1x8nqIYBlHqiEmN8b0ZjdrMcfbMsYbtofvwhN3SoM7YrXq7vq4XO8U1t2FSq1MIr6kF75T5xF8n99xmQqalN5UyyWPgimVSsXlSPEco3G7uyJ/wDTPmDo8VyZXDxE+2WooYtfFaHJ5o8N5m332Xa8GZUJt6CLObCX1EEGGaDqFDHQNUg/B25bKEMxSGFc+vI+z3ZJrOiUeFG+i4jk+Z6bAxyNDwMtL9aF4b3ME3j8ZAgAoIUMAACVkCACghAwBAJSQIQCAEjIEAFBChgAASsgQAEAJGQIAKCFDAAAlZAgAoIQMAQCUkCEAgBIyBABQQoYAAErIEABACRkCACghQwAAJWQIAKCEDAEAlJAhAIASMgQAUCKTIR4ur8/P1re/Oh//uDq7Pj+7Pr/8MTDJp5v1+dn1+cXj07EWEgB4ddIZ4vftxfX52d1D/GkdDs4SXyUGkyEA4D1LZIimsqH5t7j5vd/v9/d3VTJ4qCJCUBXxcBkM1s8Qvx4XY7EDAHhrkvUQ93dRJvj1u8kBVetGVUtxiBEyBAB8PAMZ4mJ9fnZ9df/j9mJ9HtdMHP5dPD7JEADwEaUyxNPN+vxsfXVZZYj908063Yny/q4aQIYAgI8nlSEeLq/Pz+5ub+oMUfeEaP5d3Twuzta394+LpjmjyhBj/2QIAHhPcn0qm76TbYY4/EcvQ3T4XQYAfADjv8tY397IEABAR/45lU8T2zLqbw9NFf0MUTd2DD6ZCgB4UyZniGw9hAwBAB+RDAEAlJjcH0JbBgAQKKiHuN/v981TH2QIAPigjpYhJvyTIQDg/ZieIS7v6qaNX837MhIvB09TDwEA704+QwAA5MkQAEAJGQIAKCFDAAAlZAgAoIQMAQCUkCEAgBIyBABQQoYAAErIEABACRkCACghQwAAJRIZYrdZLkLLzS76frtqPuoO2bfadqYbfpCz2ywnDbffbZbdhdtvV4v0XHabZW9VkhPbrqrxu/+fHTppaFbPXpdokLlzGliCxWqbWaNJ+6OzYN2Rkss6cgzFI9SLmNnm0eyq6S432/70sys5OM14B40dTUNDzTvSAF6vsXqIxHU/X2wNXQPH80Yz0XAqqUt9+2U/a1SfZDNIolxLLP92tVhtDwux2ywT4/TKgfS3k01fl3jzx39NTl99Y9tm9tSqiQ3s9naAeAWyf0Upp7uozVeH+S03u/1+t9vto82S3ELB9LJ7rn/UT8jE2aQx40gDeL1SGaJTiFcFWb7MT48Y2W2WU+/MmwtpdfnddK7cbRHQCRd18dEOmysK8oVsch1X20StTHRnu1o9vx5i3rqcIENMriGaPLk2X+WXPJx3XjhCuPMHMkQ1SrjVghknD4wJGWLgPBjY38kMMf1IO079EsDJpOsh2otq6rI/ux6ivsUduAKH5WU04+68wkIymluvwmK5WqVKg7HmgWo60XSTxc+R6yFmrMvRM0RYZ3CEcitc+nhyuQwxsR7iMPqUDBHUrITzndMQFx2W04v0YOD2P7erXiaYeqQBvF6Ztoz6ktxczKKLWllbRvfynWxoDq7r+d4G9ZhBRXBuvv0l3a4Wy2WuPNiuFouq7qNZgN1mtQzLpMRCh58WNyXMWZexlvzS+oSqyM2XrPNKtcOmyC1v0LgwtRgPMkRmiuE3dUPQahV/E9Q4BO0t/XqI6L8W4QHZ7+YRftSZWrjMYZKZfKQBvF7Z/hC7zXKxXC6DEju4wtVVBJN0Rtvv9/vdbtef3kFwCc3XQ8QlbrAwYYmeaMFebna5NvFoynXZttpuV6mK+frrthwYKv5GlazLYdRUPcSEm+xoIXM32oWl2YwwNa0eoj4au/UQ6RwwbQWiccPS/RBumvwc5s7ejDoRItoh0WZtBpx5pAG8XgN9KuNq/6j0nt+WMbk8G6qqzxWSy83mcPltS+NeuRtdvNOrkCiK6slENelB8XuEeohZ69LZxp01KW3MyGWeogyxXR16jSw3u/Tuz/ZKyXRHWG0T36VWdyw+9eohutUMnWSxXVXrENaV5TJD98s4mkXdTqYcaQCv3FiGiK+Pvebl3hjZEifdKN0dKyoAVulf8XWK0MS9ezJDxBftVOVHMtP0bkTbqR1aeVJ1EUVF74R1OXqGyASueJlmTjA6cPrTCDovDBb3vf1QVyINDjpSsdErxKstuNssq9yz2tatDtn2u2gb96odolXtVu/kFn7oSAN4vbIZorppT+WFogwR/dBgtwsvrlOTRz2ZbhG6WCwWq9VYPUSvU1u/9j5fNiR6xB3uUlNbqfT2fcK6nKAeIlyf/jI9u2U+nyH6H27qSJaaaXcRd5vlcrlcLJer3m4cEmeIuE0tbMeI+uTmokL3MEmsaKIubDPnSAN4vTIZor2eJi73RRliQntGrzIirkNuv+rcrE+4d48qkRMrWU16uw1vcqMqi84n+0698/QMkeiSN3NdXk+GSK5LuCD1KoxmiKDiIohm3S0eL+KhUqLbyDGnHiKYR28fZush4qNwcGunu5nMOdKSBx/AK5HKEPGVr3ednNOZYIpwBt32kwn1EPXFPNk7oe37OdCvrjO7uiqgXozD8nQGDeq+0wEpOcfBLTRhXfbpeU2Y85j5GSK3LmH3gmYamaVsNnfUgSAxZqfr4yESRn0awsA4YfOMHa0DGWJkC8RDpM+VaUda3N4yNCeAPyGRITLlRnx7PO2bAcFI+USSE/asaMvdTXs7e7gJXo3XDdcZo5te+gGjKRKaZ0xVFe/JjvS5onfwvnVsXaZs2iPVQ0zZo5ObOSa2ZSQWI/VdVPsRTWjX/upmaBKjGSK57m19U16nniK//aYfabtujAJ4XQb6VHJsx+hd8Fq8p3UBoIgMAQCUkCEAgBIyBABQQoYAAErIEABACRkCACghQwAAJWQIAKCEDAEAlJAhAIASMgQAUEKGAABKyBAAQAkZAgAoIUMAACVkCACghAwBAJSQIQCAEjIEAFBChgAASsgQAEAJGQIAKCFDAAAlchni1+Pi7Pr84vGp+eDpZn1++aP56/ftxXX3z7O7h9xc4qk9XF6fn61vf3UG+nF1dn1+Fk62P5H+WADAHzExQ1R/nl1f3e/3+/3+/u78LMgB9cB3VxfX52fBvzYNRFNLB46nm3UzYiqLNAswlFQAgJczuR6izg0Xj091CGjyRPPV4uZ3U5fQFvO/by+uzy8enw5Tayobmn+Lm9/hxB+qJJGsimhiRD0KAPAnJTJEHRHaf1c3bR1A79/F41PdNnF9dd9PHv0MEQaO/X6/f/r1uwkHVa1GM/dUjGjqKrRoAMAfl6mHqEvrsB5iv9/3ayD2+6buYX37K6yrCIZPZoiL9fnZ9dX9j9uLdTqdJOa+H04YAMALymSIqmphUoYI+kYEfRqqRocf/QzxdLM+P1tfXVYZotNVszvZOKwEC6ZXBAD8YckM0XZgHM8QbcPH+vZXVcDfPTTVGMkMUQ1ze1NniCaChO0m69v7x0W6suHQnUKvCAD4o1IZIq5OuHvo9ZAIahoem0J9ffvrx1VU2XB9dZ/pU9n0nWwzxOE/hjNEFDhURQDAH5TIEMFPJ6rCvtO/oVsPsV5cXJ+frW9vmgL+8kfTy3L0dxn1WNMyRDv3ZLcMAOAl5TLExbr72879Ptkf4uG+Sgzrq8t1mx6iCoxOn8r9fn+oqJjTllEPefew73feBABeWPq3nU0pPul3GZ3nTjY1De2TJCZkiAn1EPVk21lXYUWvCAD4Q1L9IR7ufySeMbXfT8sQYel+tAyR+J1I9FQJAOCFjT+nMtuhsv19RJQh6qK96vA4tT/ESFtG2IoRyDzEAgB4AdOfdb3fT6iHqAfoNjFMr4e4D4avMkTTYSLVg9IjpwDgTzlqhqhbHPol+q9u28TUDDEUICpjb/sEAE7iiBmiapWIy/LgZxpRx4VuhrhsH3YZPrSq249yaFH91BMAXlQuQwAADJEhAIASMgQAUEKGAABKyBAAQAkZAgAoIUMAACVkCACgRCJD/Pvvv/8BAB/ev//+K0MAALPJEABACRkCACghQwAAJWQIAKCEDAEAlJAhAIASMgQAUEKGAABKyBAAQAkZAgAocaIM8f3Lovb568+TrwQA8OJOkiG+f1l8+f7ff//999/Pr5+lCAB4j07dliFEAMD7dOoM8f3LoqmTAADekdNmiO9fdIgAgPfphBni59fPEgQAvFenyhACBAC8b6fJENowAOC9O0WGODwcoqFXJQC8N55TCQCUkCEAgBIyBABQQoYAAErIEABACRkCACghQwAAJWQIAKCEDAEAlJAhAIASMgQAUEKGAABKnCpDHN67Nfb+zulDzh24fgO5N34BwAmcJEMEr/7++fXzUCE+fci5A9dDf/0iQwDAKZzo3d9BLcHPr5+zlQbTh5w78M+vn798r0aSIQDgBE6QIcJiu2pMyBXj04ecO3ByLADgeE6TIT5//VkX8/V/ZTPExCHnDhyOJUMAwAmcqB4i7PQ4mCEmDjl34GgsGQIAju8EGaLT33Gg48L0IecO3JIhAOA0Tv27jJFCfPqQcwcOxpEhAOD4TvR8iKbT43i/x+lDzhv48CSJyVMHAKbznEoAoIQMAQCUkCEAgBIyBABQQoYAAErIEABACRkCACghQwAAJWQIAKCEDAEAlJAhAIASMgQAUOJUGeLwyqvxF3RXb9Ka+E6sGQPPWQYAYJ5Tv/v759fPgyV+NejXaW/onjPwjGUAAOY7RYb4/iW88f/59XO2HuDn189fvldjjBfyswaevgwAQIkTZIiwjK9aHkbL/EmxYM7ABcsAAMxxmgzx+evPuuSu/+sPZIi5ywAAzHGieoiwH+MfyhBzlwEAmOMEGaLThXFKX4SjZ4iCZQAA5jj17zIm94A8boYoWAYAYI4TPR+i6cc41pXx8AiHCUPPGnj6MgAABTynEgAoIUMAACVkCACghAwBAJSQIQCAEjIEAFBChgAASsgQAEAJGQIAKCFDAAAlSjIEAMC/czMEAMAoGQIAKCFDAAAlZAgAoIQMAQCUkCEAgBIyBABQQoYAAErIEABACRkCACghQwAAJWQIAKCEDAEAlJAhAIASMgQAUEKGAABKyBAAQAkZAgAoIUMAACVkCACgRC5D/HpcnF2fXzw+NR883azPL380f/2+vbju/nl295CbSzy1h8vr87P17a/OQD+uzq7Pz8LJJjzdrM/jBQMA/oSJGaL68+z66n6/3+/393fnZ0EOqAe+u7q4Pj8L/rVpIJpaOnDU4eBsMIvIEADwWkyuh6hzw8XjUx0CmjzRfLW4+d3UJbQh4PftxfX5xePTYWpNZUPzb3HzO5z4QxURgqqIh8tgsH6GqMPNUOwAAE4gkSHqiND+u7qpKyES/y4en5pi/uq+nzz6GSIMHPv9fv/063eTA6pajWbuTYyQIQDgVcrUQ2SaDHo1EPt9U/ewvv0V1lUEwyczxMX6/Oz66v7H7cU6nU7igCJDAMArk8kQVck9KUMEfSOCPg1Vwf+jnyGebtbnZ+uryypDdLpqdid7dS9DAMDrlMwQTQ/KCRmibfhY3/6qyvu7h6akT2aIapjbmzpDNBEkbDdZ394/LprmjDrNjPyTIQDghaUyRFydcPfQ6yER1DQ8Nn0k17e/flxFlQ3XV/eZPpVN38k2Qxz+o5ch0svmdxkA8IclMkTw04mqsO/0b+jWQ6wXF9fnZ+vbm6ZG4fJH08ty9HcZ9VgyBAC8NbkMcbHu/rZzv0/2h3i4rxLD+upy3aaHqAKj06dyv98fKirG2jLqbw9NFf0MUc9x8MlUAMCxpX/b2ZTik36X0XnuZFPT0D5JYkKGyNZDyBAA8Eql+kM83P9IPGNqv5+WIcJfUsgQAPBejT+nMtuhsulW+TvKENGPLaf2h9CWAQBvzfRnXe/3E+oh6gHaxznkppath7gPhpchAOD1OmqGyBbnv7q/s5iZISb8kyEA4EUdMUNUrRJxWR78TCN62Xc3Q1y2D7uMHlo1hXoIAPgTchkCAGCIDAEAlJAhAIASMgQAUEKGAABKyBAAQAkZAgAoIUMAACUSGeJfAIB///33339nZ4j/AIAPT4YAAErIEABACRkCACghQwAAJWQIAKCEDAEAlJAhAIASMgQAUEKGAABKyBAAQInTZYifXz8vFosv38eG+/5lUfv89eeEzwGA1+A0GeL7l8Xi89evX0YzRDXgz//+qzNHM3jucwDglThFhvj59fOX7/9VQWC48P/+Jaxk+Pn1c/1n7nMA4LU4ZX+I0QwRDlA1fVR/5z4HAF6NP50hPn/9WaeE+r/qDJH8HAB4Nf50hoj6TAYZIvk5APBq/NEM0eku2fZ7yH0OALwaL5whqhqGw4fB7y+iwXOfAwCvxEkyxOHRDrU2AnQzxKHPZLfbZO5zAOBV8JxKAKCEDAEAlJAhAIASMgQAUEKGAABKyBAAQAkZAgAoIUMAACVkCACghAwBAJSQIQCAEjIEAFDidBmiemnWtPdlVcN23+89ZwoAwMs6TYaoXt39deJLu39+/bz48uVLlCHmTQEAeGmnyBA/v37+8v2/KgeMJ4CfXz8vPn/9+T3MEPOmAAC8vFP2h5iSAOoE8d9/37/02jJkCAB4vf5whjgkBxkCAN6UP5ohwtwgQwDAm/InM8T3L4u+aAQZAgBeqxfOEFVsSMUC9RAA8KacJEP0KhjaHDA1Q+SnAAC8Cp5TCQCUkCEAgBIyBABQQoYAAErIEABACRkCACghQwAAJWQIAKCEDAEAlJAhAIASMgQAUGJ2hgAAGCVDAAAlZAgAoIQMAQCUkCEAgBIyBABQQoYAAErIEABACRkCACjx/wF8PKv9+RURoAAAAABJRU5ErkJggg==" alt="" />
----------------------------------------
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAApwAAABQCAIAAAA7nDIUAAAdoUlEQVR4nO2dL5yyzBbHJ1AoBDdQKAQKhbAGisVgsRguwWIx7AaLxWCxGHaDxWLwBovhEiwWwz7BQjFYLAY3UCwECoXCDQPjqMAC4p91zze9n/dxARHmN+fM75xBHgAAAAAATwG69wUAAAAAAJAPIOoAAAAA8CSAqAMAAADAkwCiDgAXgQAAAK6DruupR6RrDHMA8EcwTfPebz0AAE8LiDoA3BRd1/G7pwEAAOSNYRhpByUQdQDITrvdxqJ+7wsBAADwPBB1ALgETdMQQoIg3PtCAAAAPA9EHQAugeTe730hAAAAngeiDgCZIS65wWBw72sBAADwPBB1AMgMccllcKgCAABcAxB1AMgIuOQAAHg0YDwCgIyASw4AgEcDRB0AMgIuOQAAHg0QdQDIArjkAAB4QEDUASAL4JIDAOABAVEHgCyAS+452K4NXdd1Xd/b7r2vBXhyHMvED9tqs7veWWBIAoAsgEvut2NujbIi0ZtnaG9dy7n3ZQFPiWN13zT6YZOUsrE1r3EqEHUAyAK45H41trkWCyxiuJqmaZrGcwz+QeWSBhE7kDfue7WIEHotVTRNe5VF/LAxHL/c7HM/GYg6AKQGXHK/nV6zUtbeSMrdtfeNqop/0954cd9rA56MzWJcEJQllXLXhx08i5QrzdxPB6IOAKkBl9zvxt2XS7XTRLtjFUXuSuMs8JfpNKrLrXXyPz9bNYQQQtzGzvl01xV1c7terjZXPQUA3B5wyf1q7O+V/rU+//+DtoYQElRYUgHyZDwen/9P0/ADAyPvhfXcRiXX3uu6ruvTZl3TNE3kOXzF3dE8r1MAwIMALrmnRB+0EUKleufeFwL8AUwDIYRYcZ+3hyMfUd8sxgih11KJRSewhgl2UuDZAJfcU4Ij9f7k694XAjw/OFJXqm+5Hznv/KFrayWZSPqLXAmdheCwfrFc5Xx2ALg+4JJ7UtxaUeBEFdzvwA2YfrYQYnTjO/cj578oOOzUiajXO8PzD+w3S5KcL2lteIOA3wW45J6Sb0NnEBroxr0vBPgDuLYqcqrWvsax8xf196pCRF0P8wC0NZVO0E/+bXO/higsc2usb3c64CkBl9wz4tZLEqymA7dhNuxwvLy9TqujvAcmxxSCdXXmRbbCwnBNFWhR70/+5XwN0XQbZa0NKVPgIsAl93zMhh1BKUM7OeAGWFuD5/m5ca3wMmdRx445P7UeMe0ddRsHSWe48wK+K+FaW55FIOrAhYBL7snYLHVRVDb7vOuFAeAM196XZHE4W17vFDmL+odfUI9QzOqUY3WaNYQQx4vja363E8a9JkIg6sBFgEvuybB2K1mSjW3+3ToB4AynWSleu8w7X1F3S+Ih+b4JTb7fCdtc8ywCUQcuBFxyz4S93xRlebG64pZZABDgdurl9/7k2qfJU9StzYIJwnSxVM/xyBfj1INCOxB14BLAJfc02Putqsiz5VnLS8f6GIa0AAOAC3B7zWpoOdh0+JlvM5c8xybcjwnT+pjmeOQL+aQWBUDUgUu4xCVnmlfZaRHApLq9lrlRJV576+rHTEaDV1n8fXu6OJYJNr8bkvJddrqNqqCU9TOatVLuew3kKeqNMtmcmFlsbmR/+wn3s3W0iy2IOnAJ2Vxy2/VXtVyeLqDb0hXpv9Ua7d4+Qe+Y/W6lCAUUxYMtHf6IPuqXK7UdiPoNMeaTUrlqbBIs3Lh2SytHPmxX2BUwP1G3ty9B8p0VS4/wTtj7HdlOkaBWGydzpfB3wbEmowHdxB4hxHC8pmkfw3HCSfFus+q23wosqjR7J/+/1awLBd9/UK5qkzm0vPgFZHPJjfvvUrGyA3P19ZmNurwg/VgsNOy1tGja/dFtrvZyHMvUykq9PXiE8favYW6WEs+3Bz+ska8W05iHTdMauTdSTyfq27XRbb+VXv31aY4Xm60OHq0MfUDEr9b6iPpzXdfHww9N07RahY0oZA9wJoN+tUxUmalozdmXL36WuZYK7GwV6Vn90kc8R5b44zhvkDMbf5K/lRQV3/sC3deeLXyOZzGX/qWPKqVX8vGDqDtWr1VHYdRanzEHTItjmfg+H24Cw9U0baSn7Gvt2jN90tC0V1kklyq/ltrdfpKQ6MlI75JzOvWKWKz8wXt1LxaTPsNwoxuW1dwLy1wXRb7R/TVTkOfD2q0knqs2ug+VJEkq6ruNoZVfEUIFQWp1ejjGfdPKWNq/1mavWSGD/nhBe0+cdkML1deY/k2WuVYlAcvnW9tf92o1ayxCBUHytYoRzOihcrdZkVhclQ6pth8j9UMZPVs4CqBd+6NNVdgjZjg7Da/t/e6j15HOMntY1O39rlIUUTS55GEsc9t50/Dt5kW52ergrzka9GWRRwhVGt0kCuPa+363jX+411LlYzjGByHfriD8udLetC65XrPCcMLa/Ft36e4M2hpiuMlTL3Y41q4oFpRKE2aL92Vr6CxC1ff+vS/kQILhybF67QaDEEJsqzc8mZIY8xGLEFuQRP6QfD/eS85dzHQcqUz677SGRRWyu7ZZFAtYVr/WR3G0uVlKQT48+bbHdA+7+DV1Ot/QGYbE4q1akXyA5ZWTTMOk/1aq1DRNw/JJi7q936oSz3B8p/ex8ldinOnwg57unB8wJe74s4OPVxCk4fR0imBvFvhEn9Mf4pjFdIhXBwSpODeO7MHWdkku+a+11UzlkpsNO1FPEXBdHEuVCgzHG7dqbHVznHpJRmxh9Q3zxfuDN/d7nDf9B1Hf71Y4YmY4Psrm020cuQBea63Iw1nrQw472o1CtoQJTeNvl1Mm+l9DSSzqTkk8rKDP1yEjAt0yD0U0t/c8zzZXL1Ruoqy9l2ReKWvnC6vL6Sd9wOEsY3iBV9d8ra01Q/O9WGYQQnEbCbh2t1kLLvst1DxQKwZTFr74pwIF/xFK4JIz1wuOuXyWBmQEz84FpfKU6x64j1b17YGiw7+Ma3+LHIMYbrF+iPKWOFHfLGd+HMkWQqo5AxbjHi1LMTnk3XJKPiaVGxGfcl6DoL89CF+5xCKdvGl8QlF3tv/oLxIq6p694ajPxFxDRaY/iMpaO3zdxbVkSv+zmfPx6lr8iRaTPjlNMWri5Vj1ip+KqDZ7UeMh+WqMoCYaM49vWi7cvugojUvOqRVFhFCzB+XO98KfoN8/fnLtWa7bTAepssepMAL8QFQq1R9hDhkp6usvPbCGMQM9Llt7HGuyq33k96LT71GCTUfzJ6ZxAp6oLjZJU095irrnKC+Hz8QMGVSBH5JULcZJ0awcdqCPlNto7P2G1OfIJS0iNHGK/GHqEHHznfegWEAu1aMu2DEN8gMl3TrwKUQ9uUsuWMSBYfee4HGW4cTv+0br9oZDKMdaZLzL5YtceQT9ADD71QwPDo+wdW+4qO9WC2L2/jHLTfec4V9rMZ+sl4hNLHq8o1P0LL/ahXzM0AeIk5InNpOm3127FFjqOKEYdfyS+KM6et7xFrRRsxMM3RsndSc+164G5ju2IEXv5eeWJV9YC2LRDBvmiEMw3ttFX+2xIzIax2zEVnVkQP9aJzp1fiR2yblVhUcIMfzrQ3li/xrbfxP8e7U+79oIK1dRt7ZfbLJhGbgttvLCIISEYu3uk62QEcqxdooQmNESLEp16iUyysfkG11rQ9LMnFSOPqqjCgdZF4uVc53ab5bNTopnOrlRbr/btJp1rfG23kaujtB59ZjvS28bHy/qOPHg3/DE7j8M9mhg+pO4cjVzu2rWtcZbe2uGzJOwh/PHQXD9b0I+Bi65UEzDD+gTpjEcy9R1vddpaVqVZbjZaY21M+x1CixiOF7/d+t5zOV8zf0SVkkonPfIXC2miiQghELbZ15KkB96kcr3nF3lKurkfU8VERpfc12fNDStWlZZXt6f3Q7XNsuKiBhucOau/S2Y27Wu6932Gy4/Do03cPImciX0MoKEKzNf33lzoBBRp9SIna2+fzjA8ZJwlHHM87x/k35CZSVGOX9wrL5f+BskF/U4XHs6GpRVhb62+4q6uZ4TieXlSva7RKUomBfp/J3HbI35oXxfrf61Blb+8/OTS44Mu4kW1M8WJni5fJhGu3aT6p6kVN8v/Q63hV5XwuPJnHISzcc9ykv6ss3/cXJVgflxXLo6eYr6IeBJvvjYf68e/wohs//VbBj8RGL08unjQrIy1MvydvapPcmxZvYjx0Be/Ls3LT0V9cOv+5MUYWg3eHy+kRa5yb+4lk+OtRWP69ovrAK8UNS3a6PTauL1CI4X6SK0+4o6PWj+WKUWA72AEtXLYj4ZkBWZsvb+1xQ9sUvusMyRKpZafelyYIwIRhy3rZU4XtSqfnXJL3U773ebZs1P5pHszlIfMIip1DRcOXmlMgHygtxga6xI8hN1az0Phtq4Fh3hUFUt58MRXad6x/nP5SxnI/+LcPLZrMetFX0hiFk2zQwxjL8o1dwPnopjUXdtldR0MZyRoAiS1pU46XJM4bApa3wjOc/zvOX0Ax1zyc+QWdSNxbQShOavpQpux/Yg6fdvQyeTiyS3NBLXUngS8Id4HbZrgxTLsQUhvpXes5LQJedaa/JwxLQ7DIXMj7HyLcY9QSnjGsj9bqPr8188j3L2Mn7GWHHvera5FvigRNa1Z7oeuiR0OSRIzX3PjBTkJ+rzUdd/S8VShj8nD2foILNdG42qihh+94ufM887OJQZ42zi41jmoN9mEfq4IASKgsoWcInTKFfhSNTp4rQkK6a0rqDY0GQ9H5GPJVxrPMsasdPosrp4Moj6+ktXFd++XtbejPUhtfAgok638Lskk0H32zmy1DqWPjk0u+V4sdP7+LPtThO65Og04PI77b3yk6vMi2zut4okP1MrOpKcHC82bU1NXo96CaTcJmnt5TXIT9TJkMgX4/zIMeCxK2pOMB917zn7yQkynIbOql1rzV1nwx66eOqeyz3Hou6UpUO1VgJjs1svHaq24qd4tAIlnSW5tlY6WpPjeDna3R1HKlF37X27Ebw8onLST817EFE/tjKM5tktVPR1KmUNb2NDJjSILWhaYzJP2TH+sTFNs91OVowXkNAlRxlHsszWyWuiKMoj1MbkCMlDKIqStBLyYki3peus2ScjP1EnBTWZj+YnVhkxLInkVGT+GovNN4aEpqHfZdxrXsvhu1+REfk2c9YoDqJOXLsoWTr3pOdM7HPm2/3xoZPPknB/Y/os5UY34d/SJBd1e78tyf6HJbUaGpg+gqiTskh8T88TTUlxLenYqYVb62uNN13X6fzERbj27Hwn4cvY7DJaTAcDPzNhGClU0394fnLJUe4EPnWgTq063SBgmgy62YoJf9wDLRxn5zdKYPlNlBUzb+gxKn3iJB2R97NWYRDiePHy4kwyjmXoZoEJun+y5z04FuNe7r1TtsY82zPW/WnrsxhIVrg7mp/8E173uVZvXcr0et8qyoOo057zuFavnufhu8MxDJOoYpueLqStw6Yr5vHjuEz/kyQVdccqyX5ftpia70cQ9aMZVYglJCmkGzwmad15+tM8QvMZ0zRV9fCjqKqa/A/xn/zYS476KYUMCTiy6nkDozv9fKYicwrBX+xkXra3WlWgl5aS28Wzkfl+Jn+SyciTOdVBBvl/x4kLx9qKLy+5dzml738qLsnlkIDn3B3ZqhWv2eTRJDJz31aSB1GnOsNEWqADnHpJZgtStUzqu5h/0W8qXUudwe9Ge7Oz3a+Eok6La8wdeARRp3vzsVI5yZ+EQnsdUGQTvYt5AFEnATpNwmA9eS+56WcrOHa2fK9fhcW8KM+znB5AxoH44pccoUXl373y7/ml38meC5nnfOT5nC6PapXbmvo0LY3d7yX+jiebWRv64Mp7ARxE/Z7VFpSou0VqX7H4hsnDTh0hdjKfE0N7bM/CQ5FPZCM51xSYkIxQgN9JG5Ph9Ugm6kdNb2JWqR9B1Ol5EidXkvxJKCdT6WuJ+l3T7yRAFwThRNoTBuvJd1wl/uTQDOePLKefJPt1rd/iTjjWVnrx36+bbQFOWRyy/Bz5kJ+ok87T0Rtn/AC5IfR6s6EPxGL1eSywzhZbw+i1c8faSoLw76obrgTnRWGZ/1tCxqk91fw07prwviDtgU5XqMeEv9ZmQQ7MiqXQJwfn52PyY3RAmbbnmnechIi8VLo97cOL+mHTd5Qi/W7M/7c+rh062XQuafjrWIPRPaeiqdA0DSFEnHF0Bh4lC9a1xDuu0vcz7SKuY20lQRwP/WH3/juR5EpbU7vD/4osQhl6IWflYJRjpbtNkfITdeKjzOx+J9UZ5Omy9xtJEJ5rj1p/ew7qMXNbNfUatelHUEa5S5zLl0NE3aY3FYuaShvzMcf4EkWXnOF82mI2Pe+uSisWEVRzvRClQwdyvEIct1bnfpM8QobUE11MH1n9Rf0ksWp9FNDfS9Tp9nwJNw4x5mOOO91tzzUN+luLxdqPOcrtaqGI/JVaLV4JWrkNw6C+caJg3X96E+y4St/PtGUtbU1tD3R3v8KP1zN14TX0Ad7TyJ9e36ptGXmzLslmXUp+ok4WIjNX6JH2NcEI7zTKyu33Rro2ZYlF1LrkfNRVKs1rP3G0P+naBo54DhlFOgB9kUrn2ZjFdMAxqFhp2K7neW5JDLSNFfeu59rfEs+fWy3o1Lfvw3KssiLQqw54fhCrfIfligwRTKtWPOjWcZSwWc7a/ZHn4SWAw1jPCcr5rieWudXKR21i6bjfso6Uld7QJX6ApkU94ehDb5WGEhQFzMY9luHG8/Npk7/7SOg3Ojur1e80GYSqje4vUvRzUgXraXZc9eiNg1MZyv5N+sGCn/9m0f0ZV//mm7P2LKvlrFZ6ffylUNtci8HIQIxa0+UO/6trf09npzWu6y+9WvZ/I1F+7fZH2Z43Etpe2JLyIvIT9cPW1Rk6ymGC0AXfkEn/PX5o2u823XZTUO43JcqEP3d8URzPM9f/RDGuFtoyt+23BrZjMxwftTvGj5As3d0NMQdRp5dpEULVRoeImr3fdZo1hJBS1vybQ1mfcHDZa1ZCxhd7S1VT48pdp1UrFStN+h5j4Wc4MerWE/98qNb+yPFXOzSxMbeGIhTI4EvPP/CXNcn1uPboo8dzDC8q4qH/GnlXnWH3vX4sh/QkKf6V7r9RbXYS59JPGmtHzXXs/a5VryC2MAlRdM8Lc6iWtfeTx9qxzOFHT+Q5hJjWx69JvEeRKlhP7pLDkP2N4uXWsUxdn+FnebdaFAoFsuAX1B35CRjH2pXUEl0FtpyNS69ykrPci695YHpwrEpRJDN4so5GLrvbqEy+jrJHVHH5AblUy9CigrzR9yz6z7H3u7snkVTGWDBIeRZrrc1yKsqlqHZSu82q3awFHVd/magHURy/tfaqLOrRXcv2m6VwXF6FEGILwmK1S3tSkke5WRuGKA6ibn8bxw3Xg9rKoPV0pd4mD8ChCzFCL5I67LeVsJ286WI2hFCrN6xXimf134fM/2HSQOPaNRUXw3AxP08MJyvHCDGVmv+96I3D6b73wQe5mqZpWg3fmbL2vrfdE+0vVWqvslgQlM3+8JqRHRKDx4SP6g7m2qbMH3128pXIG2xtDf74ByvVmrPFIej5muudVoNjUEGQYp9R971aRGcoahnXjJJGNAVBmmVt6vdoJA/Wk7vkMOQpin23/TbUglwajwZCgaVdLKRaXWsPzO2qVFSOSsMda7Pbe65dkl7QQ4q6b7FmCx/DcVWVlHLj8E4H1eovkmpZVqdZO1nps78NjmFbvQ/cH3e3WZHcWPpdG4KBhRXMO2aWct2ljUwZs05T/PVmXlIkUVxuIt2mm83GCzIrv07Ug6VhRlWLsUvprqaKxUp9udp4nufa+4/uuz+PEdW0wSNJC929bVRkm9gjGK47PKqmP6lvFpSyGTaR/ib5ooBipX4yNzw9lKQMx1PymeViWlYkhBDDBc2is+A2yicbRiE8pO6OL5vufHcEW+iP/IfjJKWBj4Ozo/Z+p+v6ZDSQhMLJZ3hRHowmuq6vNjvP8yxzq+u6Phm9yuLJJ9mC0O0PdF2P2f4Vs1nOzqeZJ2hv3R97uzqWWSmeXsYRDNfq9p9pE5fkwXpyl5xP0Es/yhbqed6JheVEruhNimNSLNi08YCiTr9E5yMDnWGqvfdPbtGgrZ3uIUbm9ClX4p3dEt/FbB2rciNXUd9+TfCty7xZLV5vRogdJxhOcRrv14k68RHHm5lMQ1erbyej2vTDr/pL21yv9sqj2F0ub8Zp/PFPH4k8XVTM1ludsPKhQ5lZWXuLlg3nP2rQcJTh2r3h+fc19AHHy8vNzvPchT6uB4kBWlEarc6FWz649r5VpwWbbbRD1c4d9TsnQqlWG/QdsM21fNBsttnpkVHLXH/92CwJ7wqTpNdS1GhOY5lbHI6fwPHiW7v747SAvkGDXud8iiBISicIm56MhME6/tckLjnCpP+GH9xldOfk2biPkyhksnj8rz0WIUkp/VtHpliwdj6gqO83S1nk8dBx/ortN0tJKLAFIfSLvzVDDE0kaZ/KehiEKOwiOh69BY7Z0DTfuJMDvgmGf81ogMd1cQkfG5zj/HWijitLxWIlPg6Z9NshrcyCJpup3PJkIv4I72N4UnG5mOm6rsd3/HYsEnfG4uKDRd1fc7s+b0dqfM1xOfJimWcvYj8+jr4YQnD+iE8GhdePs8HJ2vgiNdyXaPB2bZDjPM63uwZJgvWULjkfsqRy1SqahxX13AnaiaRrp49TAs9URIAJpjiskWlR4a2qJNlTG/NLRf1r0i+IxV3W1CJu8pOqKADPINmC9P0AY2bSlUIAeD7IenlUsJ7WJUdYTj8RQrxcuV4q7u+IOl6hS7VNtWOuOAYxnPBMO90RsBEsw0+/1Aeh5qcofqOo2/uNIkkxdoEfqchcfI/Uc7Df/kGKA0HUgb8LCcSjgvW0Ljka7Gn6vMLOzZi/I+rYOZhqxMTGl/tulnU9HGsr81xMuVAoxnwsKZF291B+najb+60qS9n81D7OjmfSeSDwFuTF6vv9g3TP80DUgT9OfLCe2iVH4dr7siLE7Ax0IX9H1BtlqRDWOSMKc70gPbKelc1yVmBTVE8tpp/CcYVOorP8KlHf71aKIAzP2h6kYj7qIsTOVt8/fxTj2hVFuCTbnzsg6sCfJj5Yz+CSo7H3W1Xi5TQJz+T8EVHfLqcMYvXE+7269r4k/7KOh9nA/T2jfBtBruLLc+3PdoPjJWObOiP94KK+Wkx5jlGqb57nLWdjocD1xpc1XXesosilKp4ctLWCoKwv83HnC4g68NeJCtazueROcCxTKytqtZm7rv8JUXessiK0PpLuTu1YZlWVtPf+0ys6ZrOcifzLuZKRWmKOF2WRz6bo3qOLul30O3wwqvqKEHOponveqNuQ1FryV3XUbYhK+bzb430BUQf+OlHBemaX3Bnu+LNTLFUvLMs84S+Ieq9ZSWHVXs5UVR1fln39ddj7XbNWarQH9DyGbNyCEJLU7A/eg4u6EvRzYAtCkgLgeFaLsZA4i27vd81audn5fAC3+ykg6gAQHqxf4pI7xzK3dL+/y3l6UdcHbbX6njzmnowGD7OseWvWy9nqaKc1d9hra1pjetkj99ii7q0WU03T+oPR5cW3+81SkuTVLuns52v+c3OwewGiDgDhwfolLrkb8Nyi/qUPipn6vQM58uCinheWuS7K8tdVd1u/ISDqAOB5njcYDE6C9QtdctfmiUXdmI8VtXIefu02K5D5W/IXRN3eb1VFnp85MV17/7CxeDwg6gDgIwiHrXrIf1/ikrsqWNRPNkR5Aoz5WC6G7CWxmA4VtQqafkuwqJONyZ8PrOj61/rk/2/XRq2kzNd3bTCcFRB1APA5CdZzcsldC9xWrNb6vPeF5MmXPojZoegp0xKPDG6MiPji47nBcsAy18rZzluEF7nyS781iDoAHKCD9RxdcvmyXMyGHz28+Q7D8R/D8fzrzrs95sJqPjrbmYiGDdl+A7gOu81Kn46Lkv86aO/dJFtm/Cbsb+lo67JTWp9JCykfjUccswDgXpwE6w/rkgMAAAgFRB0AjqCD9Yd1yQEAAIQCog4AR9DB+sO65AAAAEIBUQeAU0iw/rAuOQAAgFBA1AEAAADgSQBRBwAAAIAnAUQdAAAAAJ6E/wPt8VH1jCZgoAAAAABJRU5ErkJggg==" alt="" />
AC代码:
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int times=sc.nextInt();
while(times-->0){
double x1=sc.nextDouble();
double y1=sc.nextDouble();
double x2=sc.nextDouble();
double y2=sc.nextDouble();
double ans=getDistance(x1,y1,x2,y2);
System.out.printf("%.2f\n",ans);
} } public static double getDistance(double x1,double y1,double x2,double y2){
return Math.sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
} }
题目来源: http://acm.nyist.net/JudgeOnline/problem.php?pid=101
NYOJ题目101两点距离的更多相关文章
- NYOJ题目889求距离
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsYAAAJ2CAIAAADTwNOXAAAgAElEQVR4nO3dPVLrSteG4W8S5B4IsQ
- 计算两点距离 ios
//计算两点距离 -(float)distanceBetweenTwoPoint:(CGPoint)point1 point2:(CGPoint)point2 { ) + powf(point1.y ...
- 【百度地图API】如何根据摩卡托坐标进行POI查询,和计算两点距离
原文:[百度地图API]如何根据摩卡托坐标进行POI查询,和计算两点距离 摘要: 百度地图API有两种坐标系,一种是百度经纬度,一种是摩卡托坐标系.在本章你将学会: 1.如何相互转换这两种坐标: 2. ...
- 高德地图测两点距离android比较精确的
/////参考资料:高德官方:[http://lbs.amap.com/api/android-location-sdk/guide/android-location/getlocation] 主要三 ...
- HDU 5723 Abandoned country(kruskal+dp树上任意两点距离和)
Problem DescriptionAn abandoned country has n(n≤100000) villages which are numbered from 1 to n. Sin ...
- 模板倍增LCA 求树上两点距离 hdu2586
http://acm.hdu.edu.cn/showproblem.php?pid=2586 课上给的ppt里的模板是错的,wa了一下午orz.最近总是被坑啊... 题解:树上两点距离转化为到根的距离 ...
- hdu6446 网络赛 Tree and Permutation(树形dp求任意两点距离之和)题解
题意:有一棵n个点的树,点之间用无向边相连.现把这棵树对应一个序列,这个序列任意两点的距离为这两点在树上的距离,显然,这样的序列有n!个,加入这是第i个序列,那么这个序列所提供的贡献值为:第一个点到其 ...
- js根据经纬度计算两点距离
js版-胡老师 google.maps.LatLng.prototype.distanceFrom = function(latlng) { var lat = [this.lat(), lat ...
- HDU_5723_最小生成树+任意两点距离的期望
Abandoned country Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
随机推荐
- 剑指Offer 反转链表
题目描述 输入一个链表,反转链表后,输出链表的所有元素. 思路: 法1:用栈,压栈出栈 法2:头插法(有递归非递归2中) AC代码: /* struct ListNode { int va ...
- STM32F103ZET6 用定时器级联方式输出特定数目的PWM(转载)
STM32F103ZET6里共有8个定时器,其中高级定时器有TIM1-TIM5.TIM8,共6个.这里需要使用定时器的级联功能,ST的RM0008 REV12的P388和P399页上有说明对于特定的定 ...
- PDU与SDU理解
惯例:首先标注定义,而后是形象的解释. PDU(Protocol Data Unit)协议数据单元 SDU(service data unit)服务数据单元 什么是协议数据单元?就是按照协议的要求来传 ...
- 极客DIY:如何用Siri与树莓派“交互”
苹果在2014年推出的HomeKit智能家居平台的确给人眼前一亮的感觉.随着时间的推移,国外的黑客对HomeKit该逆向的逆向,结果也都汇总到了git.本着折腾到死的极客心态,从网上淘了一块树莓派进行 ...
- BZOJ 1090: [SCOI2003]字符串折叠
Sol 区间DP. 转移很简单,枚举会形成的断长转移就行,话说上一题我就跟这个是差不多的思路,转移改了改,然后死活过不了... 同样都是SCOI的题...相差4年... Code /********* ...
- ejs模板
nodejs的模板引擎有很多, ejs是比较简单和容易上手的.常用的一些语法: 用<%...%>包含js代码 用<%=...%>输出变量 变量若包含 '<' '>' ...
- Spring Data JPA进阶——Specifications和Querydsl
Spring Data JPA进阶--Specifications和Querydsl 本篇介绍一下spring Data JPA中能为数据访问程序的开发带来更多便利的特性,我们知道,Spring Da ...
- java导出生成word
最近做的项目,需要将一些信息导出到word中.在网上找了好多解决方案,现在将这几天的总结分享一下. 目前来看,java导出word大致有6种解决方案: 1:Jacob是Java-COM Bridge的 ...
- [转载]Python 3.5 协程究竟是个啥
http://blog.rainy.im/2016/03/10/how-the-heck-does-async-await-work-in-python-3-5/ [译] Python 3.5 协程究 ...
- 4.js模式-发布-订阅模式
1. 发布-订阅模式 var observe = (function(){ var events = {}, listen, trigger, remmove; listen = function(k ...