关于最短路径问题,最近学了四种方法——bellman算法、邻接表法、dijkstra算法和floyd-warshall算法。

这当中最简单的为bellman算法,通过定义一个边的结构体,存储边的起点、终点和路径长度,然后通过一个while(1)死循环不断地访问每一条边,更新源点到各点的最短距离,直到没有更新时结束。这时便得到了从源点到其他点的最短距离。附上代码一段:

#include<iostream>
#define INF 100000000
using namespace std;

struct eg
  {
    int s,t;
    int c;
  };//边的结构体,存储元素为起点s,终点t,路径s到t之间的长度
eg Eg[100];
int dis[100];

void bellman(int s,int E)
  {
    fill(dis,dis+100,INF);//初始化所有最短距离为INF;
    dis[s]=0;//但源点的最短距离为0,自己到自己
    while(1)
      {
        bool update= false;
        for(int i=0;i<E;i++)
          {
            eg e=Eg[i];
            if(dis[e.s]!=INF && dis[e.t]>dis[e.s]+e.c)//更新
              {
                dis[e.t]=dis[e.s]+e.c;
                update = true;
              }
          }
        if(!update)//如果遍历所有的边均不再有更新,则跳出循环
        break;
    }
  }

int main()
  {
    int E;//定义边的变量
    cin >> E;
    for(int i=0;i<E;i++)//直接存储边
      {
        cin >> Eg[i].s >> Eg[i].t >> Eg[i].c;
      }

    int s1;

    cin >> s1;//定义一个源点

    bellman(s1,E);
    int t;
    cin >> t;
    cout << dis[t] << endl;
    return 0;
  }

综上代码我们可以分析,bellman算法的时间复杂度为o(v*e),while循环最多执行v-1次;bellman算法还存在一个问题在于负圈,如果图中存在源点s可达的负圈(图中存在的环并且这个环里面有负边(边的值为负值)),当while循环更新时,走到这个负圈,dis【e.t】>dis[e.s]+e.c则是恒成立,每次的while循环中都会有更新,这样再用刚刚的那个方法的话就会形成死循环,所以,用bellman算法得保证图中不存在源点s可达的负圈。附上查找负圈的代码:

bool find_negative_loop()

{

  memset(dis,0,sizeof(dis));//注意和fill的写法不同(fill(dis,dis+e,INF))

  for(int i=1;i<=v;i++)

    for(int j=0;j<e;j++)

      {

        eg e=Eg[j];

        if(dis[e.t]>dis[e.s]+e.c)

          {

           dis[e.t]=dis[e.s]+e.c;

           if(i==v) return true;

         }

      }

}

最短路径问题——bellman算法的更多相关文章

  1. 数据结构与算法--最短路径之Bellman算法、SPFA算法

    数据结构与算法--最短路径之Bellman算法.SPFA算法 除了Floyd算法,另外一个使用广泛且可以处理负权边的是Bellman-Ford算法. Bellman-Ford算法 假设某个图有V个顶点 ...

  2. 最短路径问题——floyd算法

    floyd算法和之前讲的bellman算法.dijkstra算法最大的不同在于它所处理的终于不再是单源问题了,floyd可以解决任何点到点之间的最短路径问题,个人觉得floyd是最简单最好用的一种算法 ...

  3. 最短路径问题——dijkstra算法

    仅谈谈个人对dijkstra的理解,dijkstra算法是基于邻接表实现的,用于处理单源最短路径问题(顺便再提一下,处理单源最短路径问题的还有bellman算法).开辟一个结构体,其变量为边的终点和边 ...

  4. Bellman算法

    Bellman算法 当图有负圈的时候可以用这个判断最短路! [时间复杂度]O(\(nm\)) &代码: #include <bits/stdc++.h> using namespa ...

  5. 单源最短路径(dijkstra算法)php实现

    做一个医学项目,当中在病例评分时会用到单源最短路径的算法.单源最短路径的dijkstra算法的思路例如以下: 如果存在一条从i到j的最短路径(Vi.....Vk,Vj),Vk是Vj前面的一顶点.那么( ...

  6. 最大流算法之EK(最短路径增广算法)

    这是网络流最基础的部分--求出源点到汇点的最大流(Max-Flow). 最大流的算法有比较多,本次介绍的是其中复杂度较高,但是比较好写的EK算法.(不涉及分层,纯粹靠BFS找汇点及回溯找最小流量得到最 ...

  7. 【算法设计与分析基础】25、单起点最短路径的dijkstra算法

    首先看看这换个数据图 邻接矩阵 dijkstra算法的寻找最短路径的核心就是对于这个节点的数据结构的设计 1.节点中保存有已经加入最短路径的集合中到当前节点的最短路径的节点 2.从起点经过或者不经过 ...

  8. 最短路径问题---Dijkstra算法详解

    侵删https://blog.csdn.net/qq_35644234/article/details/60870719 前言 Nobody can go back and start a new b ...

  9. 数据结构与算法--最短路径之Floyd算法

    数据结构与算法--最短路径之Floyd算法 我们知道Dijkstra算法只能解决单源最短路径问题,且要求边上的权重都是非负的.有没有办法解决任意起点到任意顶点的最短路径问题呢?如果用Dijkstra算 ...

随机推荐

  1. JMeter进行简单的数据库(mysql)压力测试

    1.点击测试计划,再点击“浏览”,把JDBC驱动添加进来: 注:JDBC驱动一般的位置在java的安装地址下,路径类似于:    \java\jre\lib\ext 文件为:mysql-connect ...

  2. psd切图

    打开UI设计师给你的PSD文件,我们以下图为例,截产品超市前面的购物车 1.按v选择移动工具,然后在上面的选项栏中勾选自动选择,在再右边选择图层 2.这时候用鼠标选中产品超市前面的购物车,就能在右边的 ...

  3. HDU-4527 小明系列故事——玩转十滴水 模拟

    题意:就是平时玩的十滴水游戏,游戏者拥有一定的水滴,能够滴在某些位置,如果一个点上的体积超过了4就会爆炸,向四周传递一个小水滴.该题就是要求模拟这个过程. 分析:这里有一个问题就是不能够使用递归来处理 ...

  4. poj3301Texas Trip(三分)

    链接 这题还真没看出来长得像三分.. 三分角度,旋转点. 最初找到所有点中最左边.右边.上边.下边的点,正方形边长为上下距离和左右距离的最大值,如图样例中的四个点(蓝色的),初始正方形为红色的正方形. ...

  5. C# 使用HttpWebRequest通过PHP接口 上传文件

    1:上传文件实例 public void UploadXMLLog(string xmlpath)         {             NameValueCollection nvc = ne ...

  6. SVM学习(续)

    SVM的文章可以看:http://www.cnblogs.com/charlesblc/p/6193867.html 有写的最好的文章来自:http://www.blogjava.net/zhenan ...

  7. j.一个NIO与SSLEngine结合的例子

    对于BIO通道的程序来讲,建立起SSLServerSocket之后,后续的工作就和普通的ServerSocket没有什么区别了,这是因为JDK中通过JSSE的API,封装了SSL通道的实现逻辑,否则, ...

  8. CentOS中iptables防火墙 开放80端口方法

    开放端口:  代码如下 复制代码 [root@WX32 ~]# iptables -I INPUT -p tcp --dport 80 -j ACCEPT 保存配置:  代码如下 复制代码 [root ...

  9. 关于OPencv版本不符合,相关库变化问题

    由于OPencv发展迅速,已经省略了很多原来的库文件,奈何自己才疏学浅,所以只能把OPencv 1.0中的相关版本中的库文件一直过去. 链接: http://pan.baidu.com/s/1qY1Z ...

  10. table数据表格添加checkbox进行数据进行两个表格左右移动。

    <table class="table table-hover table-striped table-condensed newDateList"> <thea ...