一、max 函数

l=[3,2,100,999,213,1111,31121,333]
print(max(l)) # dic={'k1':10,'k2':100,'k3':30} print(max(dic)) # k3 最大的key
print(max(dic,key=lambda k:dic[k])) # k2 最大值对应的key print(dic[max(dic,key=lambda k:dic[k])]) # 100 最大值
print(max(dic.values())) # 100 最大值

二、map 函数

array = [1,2,3,67,8]
print(list(map(lambda x:x-1,array))) # [0, 1, 2, 66, 7]
#用map来处理字符串列表啊,把列表中所有人都变成sb,比方alex_sb
name=['alex','wupeiqi','yuanhao']
print(list(map(lambda x:x+'_sb',name))) # ['alex_sb', 'wupeiqi_sb', 'yuanhao_sb'] res=map(lambda x:x+'_sb',name)
for i in res:
print(i) # alex_sb
# wupeiqi_sb
# yuanhao_sb
 

三、reduce 函数

from functools import reduce

array = [1,2,3,4]

print(reduce(lambda x,y:x*y,array))     # 24————1*2*3*4
print(reduce(lambda x,y:x*y,array,50)) # 1200————50*1*2*3*4,50是初始值 #**************************************************
#等同于
def reduce_test(func,array,init=None):
l=list(array)
if init is None:
res=l.pop(0)
else:
res=init
for i in l:
res=func(res,i)
return res print(reduce_test(lambda x,y:x*y,array))
print(reduce_test(lambda x,y:x*y,array,50))
#reduce用来计算1到100的和
from functools import reduce

print(reduce(lambda x,y:x+y,range(100),100))     # 5050
print(reduce(lambda x,y:x+y,range(1,101))) # 5050

四、filter() 函数

#电影院聚集了一群看电影bb的傻逼,让我们找出他们
movie_people=['alex','wupeiqi','yuanhao','sb_alex','sb_wupeiqi','sb_yuanhao'] def tell_sb(x):
return x.startswith('sb') def filter_test(func,array):
ret=[]
for i in array:
if func(i):
ret.append(i)
return ret print(filter_test(tell_sb,movie_people)) # ['sb_alex', 'sb_wupeiqi', 'sb_yuanhao'] #或者用filter(),返回可迭代对象***************************************
print(list(filter(lambda x:x.startswith('sb'),movie_people))) # ['sb_alex', 'sb_wupeiqi', 'sb_yuanhao']
#利用filter过滤掉千年王八,万年龟,还有一个九千岁
name_dic=[
{'name':'alex','age':1000},
{'name':'wupeiqi','age':10000},
{'name':'yuanhao','age':9000},
{'name':'linhaifeng','age':18},
] def func(x):
age_list=[1000,10000,9000]
return x['age'] not in age_list res=filter(func,name_dic)
for i in res:
print(i) # {'name': 'linhaifeng', 'age': 18} print(filter(func,name_dic)) # <filter object at 0x00000000010FA748>
print(list(filter(func,name_dic))) # [{'name': 'linhaifeng', 'age': 18}]

五、zip 函数

#字典的运算:最小值,最大值,排序
salaries={
'egon':3000,
'alex':100000000,
'wupeiqi':10000,
'yuanhao':2000
} #迭代字典,取得是key,因而比较的是key的最大和最小值
print(max(salaries)) # yuanhao
print(min(salaries)) # alex #可以取values,来比较
print(max(salaries.values())) #
print(min(salaries.values())) # #但通常我们都是想取出,工资最高的那个人名,即比较的是salaries的值,得到的是键
print(max(salaries,key=lambda k:salaries[k])) # alex
print(min(salaries,key=lambda k:salaries[k])) # yuanhao #也可以通过zip的方式实现
salaries_and_names=zip(salaries.values(),salaries.keys()) #先比较值,值相同则比较键
print(max(salaries_and_names)) # (100000000, 'alex') #salaries_and_names是迭代器,因而只能访问一次
print(min(salaries_and_names)) #Traceback (most recent call last):
#ValueError: min() arg is an empty sequence

day17—max, map, reduce, filter, zip 函数的使用的更多相关文章

  1. python中lambda,map,reduce,filter,zip函数

    函数式编程 函数式编程(Functional Programming)或者函数程序设计,又称泛函编程,是一种编程范型,它将计算机运算视为数学上的函数计算,并且避免使用程序状态以及易变对象.简单来讲,函 ...

  2. Python map/reduce/filter/sorted函数以及匿名函数

    1. map() 函数的功能: map(f, [x1,x2,x3]) = [f(x1), f(x2), f(x3)] def f(x): return x*x a = map(f, [1, 2, 3, ...

  3. python3 匿名函数,map/reduce/filter等函数结合应用

    匿名函数就是不需要显式的指定函数 # 平方函数 def func1(x): return x**2 print(func1) # 平方函数匿名函数写法 func2=lambda x:x**2 prin ...

  4. python--函数式编程 (高阶函数(map , reduce ,filter,sorted),匿名函数(lambda))

    1.1函数式编程 面向过程编程:我们通过把大段代码拆成函数,通过一层一层的函数,可以把复杂的任务分解成简单的任务,这种一步一步的分解可以称之为面向过程的程序设计.函数就是面向过程的程序设计的基本单元. ...

  5. [python基础知识]python内置函数map/reduce/filter

    python内置函数map/reduce/filter 这三个函数用的顺手了,很cool. filter()函数:filter函数相当于过滤,调用一个bool_func(只返回bool类型数据的方法) ...

  6. Python学习:函数式编程(lambda, map() ,reduce() ,filter())

    1. lambda: Python 支持用lambda对简单的功能定义“行内函数” 2.map() : 3.reduce() : 4.filter() : map() ,reduce() , filt ...

  7. map/reduce/filter/lambda

    Python内建了map()/reduce()/filter()函数. map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的It ...

  8. python 函数式编程之lambda( ), map( ), reduce( ), filter( )

    lambda( ), map( ), reduce( ), filter( ) 1. lambda( )主要用于“行内函数”: f = lambda x : x + 2 #定义函数f(x)=x+2 g ...

  9. Python-函数式编程-map reduce filter lambda 三元表达式 闭包

    lambda 匿名函数,核心是作为算子,处理逻辑只有一行但具有函数的特性,核心用于函数式编程中 三元运算符 其实本质上是if分支的简化版,满足条件返回 if 前面的值,不满足条件返回 else后面的值 ...

随机推荐

  1. Java实现 蓝桥杯 基础练习 查找整数

    基础练习 查找整数 时间限制:1.0s 内存限制:256.0MB 提交此题 锦囊1 锦囊2 问题描述 给出一个包含n个整数的数列,问整数a在数列中的第一次出现是第几个. 输入格式 第一行包含一个整数n ...

  2. Java实现 LeetCode 476 数字的补数

    476. 数字的补数 给定一个正整数,输出它的补数.补数是对该数的二进制表示取反. 示例 1: 输入: 5 输出: 2 解释: 5 的二进制表示为 101(没有前导零位),其补数为 010.所以你需要 ...

  3. java实现第七届蓝桥杯搭积木

    搭积木 题目描述 小明最近喜欢搭数字积木, 一共有10块积木,每个积木上有一个数字,0~9. 搭积木规则: 每个积木放到其它两个积木的上面,并且一定比下面的两个积木数字小. 最后搭成4层的金字塔形,必 ...

  4. Linux 最大有效权限与删除ACL

    最大有效权限mask mask是用来指定最大有效权限的.如果给用户赋予了acl权限,则需要与mask权限”相与“才能得到用户的真正权限 setfacl -m m:rx 文件名,指定最大有效权限.例如: ...

  5. PAT 统计同成绩学生

    本题要求读入 N 名学生的成绩,将获得某一给定分数的学生人数输出. 输入格式: 输入在第 1 行给出不超过 105 的正整数 N,即学生总人数.随后一行给出 N 名学生的百分制整数成绩,中间以空格分隔 ...

  6. 温故知新-多线程-深入刨析volatile关键词

    文章目录 摘要 volatile的作用 volatile如何解决线程可见? CPU Cache CPU Cache & 主内存 缓存一致性协议 volatile如何解决指令重排序? volat ...

  7. Linux系统调用和ANSI C文件操作的区别

    一.在Linux下对文件操作有两种方式:Linux系统调用和ANSI C文件操作. 1.Linux系统调用调用常用于I/O文件操作,系统调用常用的函数有open.close.read.write.ls ...

  8. 第12章 Java内存模型与线程

    参考<深入理解Java虚拟机> 一.Java内存模型 1.Java内存模型 2.内存间交互操作  流程图: 3.volatile关键字 两个特性: 3.1.保证变脸对所有线程的可见性: 由 ...

  9. nginx下通过子路径配置多个vue单页应用的方法

    千辛万苦在Stack Overflow上找来的,记下吧. https://stackoverflow.com/q/31519505/13651734 我的需求是 首页:/ 项目a:/aaa 项目 b: ...

  10. [原创][开源] SunnyUI.Net 系列文章目录

    SunnyUI.Net, 基于 C# .Net WinForm 开源控件库.工具类库.扩展类库.多页面开发框架 Blog: https://www.cnblogs.com/yhuse Gitee: h ...