Need:

  1. With the ever-growth large-scale video in the mobile phone, so what will everyone get from these video? There are many videos contain something very interesting like a short comedy video. So if someone find something interesting in the video and want know more about it, they may not search it in the internet and find the information after watching this video due the poor memory. So if the advertiser have put some advertisements in the video ahead of time, it will be more convenient for the user to get some information. That’s very useful for the advertisers and the users.
  2. There are many videos in users’ phone. Maybe most of them are meaningful time mark. So someone want to look for some useful tools to tagging the meaningful object or want to know the object information. Then our video tagging systems will be very efficient for this work.

Approach:

  1. The video tagging project can be divided into two steps. The first one is the key frame localization. The second one is the object classification or object detection.
  2. The key frame localization can be realized by some conventional method like the HOG features split or some other method. This is a litter challenge because there is no very efficient way to get the really accuracy key frame. And I think it is a program optimization problem.
  3. The object classification can be realized by the deep convolutional neural network classifier or some other deep learning state-of-the-arts method. The problem is the labels may be not enough. So it can be a research problem.

Benefit:

  1. Everyone can be convenient to get some merchandise information by the tagged video which is processed by the mobile end application.
  2. Some people will summarize the meaningful moments and find some meaningful object.

Competitors:

There a video tagging system which has been released in the internet after my survey. The Website name is “Clarifai”. They can tag the video and get the object temporal information. And the classification accuracy is very high. So it is our main competitor.

10/18/2015

Fuchen Long

Video tagging systems based on DNNs的更多相关文章

  1. Video processing systems and methods

    BACKGROUND The present invention relates to video processing systems. Advances in imaging technology ...

  2. Designing IP-Based Video Conferencing Systems: Dealing with Lip Synchronization(唇音同步)

    转自:http://www.ciscopress.com/articles/article.asp?p=705533&seqNum=6 Correlating Timebases Using ...

  3. Modeling of Indoor Positioning Systems Based on Location Fingerprinting

    Kamol Kaemarungsi and Prashant Krishnamurthy Telecommunications Program School of Information Scienc ...

  4. Video Target Tracking Based on Online Learning—TLD单目标跟踪算法详解

    视频目标跟踪问题分析         视频跟踪技术的主要目的是从复杂多变的的背景环境中准确提取相关的目标特征,准确地识别出跟踪目标,并且对目标的位置和姿态等信息精确地定位,为后续目标物体行为分析提供足 ...

  5. Video Target Tracking Based on Online Learning—TLD多目标跟踪算法

    TLD算法回顾 TLD(Tracking-Learning-Detection)是英国萨里大学的一个捷克籍博士生Zdenek Kalal在其攻读博士学位期间提出的一种新的单目标长时间(long ter ...

  6. Video Target Tracking Based on Online Learning—深度学习在目标跟踪中的应用

    摘要 近年来,深度学习方法在物体跟踪领域有不少成功应用,并逐渐在性能上超越传统方法.本文先对现有基于深度学习的目标跟踪算法进行了分类梳理,后续会分篇对各个算法进行详细描述. 看上方给出的3张图片,它们 ...

  7. 自然语言15.1_Part of Speech Tagging 词性标注

    QQ:231469242 欢迎喜欢nltk朋友交流 https://en.wikipedia.org/wiki/Part-of-speech_tagging In corpus linguistics ...

  8. 词性标注 parts of speech tagging

    In corpus linguistics, part-of-speech tagging (POS tagging or POST), also called grammatical tagging ...

  9. (分享)视频压缩Free Video Compressor 汉化版/中文版【全网唯一】

    介绍:Free Video Compressor 是一个免费视频压缩软件,可以帮您有效的压缩视频.电影文件的体积大小,减小占用的磁盘空间,使之更容易放到手机中保存播放Free Video Compre ...

随机推荐

  1. 单调栈-Maximum Width Ramp

    2020-01-23 19:39:26 问题描述: 问题求解: public int maxWidthRamp(int[] A) { Stack<Integer> stack = new ...

  2. 最新SCI影响因子发布!Nature屠榜,AI领域Top 1000期刊盘点

    [导读]2018年度SCI期刊影响因子最新发布,Nature.Science.Cell三大神刊排名前列.新智元摘取其中有关人工智能.机器学习.计算机视觉.机器人学等领域的期刊并做简要介绍,希望对读者选 ...

  3. LoardPe与Import REC X64dbg脚本 脱壳 Upx

    目录 LoardPe与Import REC X64dbg脚本 脱壳 Upx 一丶X64dbg调试器与脚本 1.1 起因 1.2 脚本的调试 1.3 Upx脱壳脚本 二丶LoardPe 内存Dump与I ...

  4. 类加载机制之ClassLoader

    1,类加载 每个编写的”.java”拓展名类文件都存储着需要执行的程序逻辑,这些”.java”文件经过Java编译器编译成拓展名为”.class”的文件,”.class”文件中保存着Java代码经转换 ...

  5. MySQL出现的问题

    错误展示 今天还是老样子照常启动MySQL WorkBench的时候出了错误,无法连接服务器 CMD登陆也不行 发现mysql的服务都没启动,于是点击启动,却又报这个错 cmd查看MySQL的日志,想 ...

  6. 了解PCI Express的Posted传输与Non-Posted传输

    0.写在前面 本文首发于公众号[两猿社],后续将在公众号内持续更新~ 其实算下来接触PCIe很久了,但是由于之前换工作,一直没有系统的学习和练手项目,现在新项目买了Synopsys的PCIe IP,总 ...

  7. LFU五种实现方式,从简单到复杂

    前言 最近刷力扣题,对于我这种 0 基础来说,真的是脑壳疼啊.这个月我估计都是中等和困难题,没有简单题了. 幸好,力扣上有各种大牛给写题解.看着他们行云流水的代码,真的是羡慕不已.让我印象最深刻的就是 ...

  8. CentOS下的Docker-Compose离线安装

    公司服务器已经安装了 Docker 环境,但没有安装 Docker Compose,使用起来十分不便.由于服务无法连接外网,下面演示如何离线安装 Docker Compose. (1)首先访问 doc ...

  9. PHP的运行方式(SAPI)

    PHP 常量 PHP_SAPI 具有和 php_sapi_name() 相同的值. define('IS_CGI',(0 === strpos(PHP_SAPI,'cgi') || false !== ...

  10. 在线优化算法 FTRL 的原理与实现

    在线学习想要解决的问题 在线学习 ( \(\it{Online \;Learning}\) ) 代表了一系列机器学习算法,特点是每来一个样本就能训练,能够根据线上反馈数据,实时快速地进行模型调整,使得 ...