利用时间序列预测方法,我们可以基于历史的情况来预测未来的情况。比如共享单车每日租车数,食堂每日就餐人数等等,都是基于各自历史的情况来预测的。

什么是时间序列?

  • 时间序列,是指同一个变量在连续且固定的时间间隔上的各个数据点的集合,比如每5分钟记录的收费口车流量,或者每年记录的药物销量都是时间序列。

时间序列的类型

  • 根据时间间隔的不同,时间序列可以是按年度(Annual)、季度、月度、周、小时、分钟、秒等频率采集的序列。

时间序列的成分

  • 趋势(Trend),比如长期上涨或长期下跌。
  • 季节性(Seasonal),比如羽绒服的销量一般会在冬季更高,或者某家烧烤店的生意一般会在每周五和周六晚上更好。
  • 周期性(Cyclic),比如你时不时搞个大促,那么销量在那段时间就会比较好。
  • 误差。

什么是时间序列预测?

  • 就是用同一个变量的历史值预测未来值,或者除了历史值以外,还加入一些预测因子(又称外生变量)来预测未来值。前者称为单变量时间序列预测,后者称为多变量时间序列预测。
  • 比如,我们要预测某海滩下个月的的游客数量,除了用历史游客数量做预测外,还可以加入温度这个因子。那么只用历史游客数量做预测就是单变量时间预测,加入温度这个因子就是多变量时间预测,当然还可以加入其它合理的预测因子,比如该海滩的每月广告支出等。

一些简单的预测方法

均值法

所有未来的预测值等于历史数据的平均值。

朴素法

简单的将最后一次观测值作为未来的预测值。

季节性朴素法

相比朴素法,就是考虑了季节性,也就是说将同期的最后一次观测值作为本期的预测值,比如预测本周的数值,那么就将上周的周一观测值作为本周的周一预测值,上周的周二观测值作为本周的周二预测值,以此类推。

漂移法(drift )

在起始观测值和最后一次观测值之间画一条连接线,延伸到预测时间点,作为预测值,公式如下:



下面的2副图展示了上面四种方法的预测效果:



常用的时间序列预测法

  • Exponential smoothing 指数平滑

    简单说就是用过去的观测值的加权平均值来作为预测值,权重随着与当前时刻的距离变远而呈指数衰减。
  • ARIMA

    简单说就是用变量的自回归(AR)与历史预测误差的自回归(MA)构成的时间序列预测模型。
  • 基于深度学习的方法

    简单说就是利用神经网络强大的学习能力,从时间序列历史数据中提取各种可能的特征,从而对未来进行预测。这部分的模型比较多,比如LSTM,Seq2seq等。

注意,上述的方法并不能说谁一定比谁好,不同的预测场景下每个方法都有可能做出更好的预测,所以通常需要相互比较,以便做出更合理的预测。

本篇介绍了时间序列的相关概念,下一篇将介绍时间序列的一般数据格式和基于python的可视化方法。

ok,本篇就这么多内容啦~,感谢阅读O(∩_∩)O。

用python做时间序列预测一:初识概念的更多相关文章

  1. 用python做时间序列预测九:ARIMA模型简介

    本篇介绍时间序列预测常用的ARIMA模型,通过了解本篇内容,将可以使用ARIMA预测一个时间序列. 什么是ARIMA? ARIMA是'Auto Regressive Integrated Moving ...

  2. 基于 Keras 用 LSTM 网络做时间序列预测

    目录 基于 Keras 用 LSTM 网络做时间序列预测 问题描述 长短记忆网络 LSTM 网络回归 LSTM 网络回归结合窗口法 基于时间步的 LSTM 网络回归 在批量训练之间保持 LSTM 的记 ...

  3. 用 LSTM 做时间序列预测的一个小例子(转自简书)

    问题:航班乘客预测 数据:1949 到 1960 一共 12 年,每年 12 个月的数据,一共 144 个数据,单位是 1000 下载地址 目标:预测国际航班未来 1 个月的乘客数 import nu ...

  4. Python中利用LSTM模型进行时间序列预测分析

    时间序列模型 时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征.这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺 ...

  5. python做量化交易干货分享

    http://www.newsmth.NET/nForum/#!article/Python/128763 最近程序化交易很热,量化也是我很感兴趣的一块. 国内量化交易的平台有几家,我个人比较喜欢用的 ...

  6. 如何用python将一个时间序列转化成有监督学习

    机器学习可以被用于时间序列预测. 在机器学习能使用之前,时间序列预测需要被重新转化成有监督学习.将一个序列组合成成对的输入输出序列. 在这篇教程中,你会发现如何通过使用机器学习算法将单变量和多变量的时 ...

  7. Kesci: Keras 实现 LSTM——时间序列预测

    博主之前参与的一个科研项目是用 LSTM 结合 Attention 机制依据作物生长期内气象环境因素预测作物产量.本篇博客将介绍如何用 keras 深度学习的框架搭建 LSTM 模型对时间序列做预测. ...

  8. facebook开源的prophet时间序列预测工具---识别多种周期性、趋势性(线性,logistic)、节假日效应,以及部分异常值

    简单使用 代码如下 这是官网的quickstart的内容,csv文件也可以下到,这个入门以后后面调试加入其它参数就很简单了. import pandas as pd import numpy as n ...

  9. python做语音信号处理

    音频信号的读写.播放及录音 标准的python已经支持WAV格式的书写,而实时的声音输入输出需要安装pyAudio(http://people.csail.mit.edu/hubert/pyaudio ...

随机推荐

  1. 架构设计 | 分布式系统调度,Zookeeper集群化管理

    本文源码:GitHub·点这里 || GitEE·点这里 一.框架简介 1.基础简介 Zookeeper基于观察者模式设计的组件,主要应用于分布式系统架构中的,统一命名服务.统一配置管理.统一集群管理 ...

  2. Ubuntu系统make menuconfig的依赖包ncurses安装

    Linux内核或者u-boot进行make menuconfig的时候,如果系统上没有安装ncurses,就会出现以下报错 *** Unable to find the ncurses librari ...

  3. 检查点,Block块,参数化

    l 检查点:每次运行时检查服务器返回的数据是否正确,节省人工检查的时间(压测中数据传输次数过多,页面可能会产生传递混乱) l 检查点函数:web_find l 检查点类型:文本检查点:图片检查点 l  ...

  4. 【WEB自动化】【第一节】【Xpath和CSS元素定位】

    目前自动化测试开始投入WEB测试,使用RF及其selenium库,模拟对WEB页面进行操作,此过程中首先面对的问题就是对WEB页面元素的定位,几乎所有的关键字都需要传入特定的WEB页面元素,因此掌握常 ...

  5. C# 微信公众平台开发(5)--添加图文素材

      微信公众平台开发 --添加素材 关于微信公众号素材管理,我们可以通过接口文档,了解基本详情:http://mp.weixin.qq.com/wiki/10/10ea5a44870f53d79449 ...

  6. 3.8 Go Array数组

    3.8 Go Array数组 数组是固定长度的特定类型元素组成的序列. 一个数组由零或多个相同类型元素组成. 数组的长度是固定,因此Go更常用Slice(切片,动态增长或收缩序列). 数组是值类型,用 ...

  7. OGG应用进程abend报错无法insert虚拟列

    环境11.2.0.4 linux6.9 RAC2节点,ogg版本Version 12.2.0.1.160823 OGGCORE_OGGADP.12.2.0.1.0_PLATFORMS_161019.1 ...

  8. ORA-12519,TNS:no appropriate service handler found的问题 超过连接数

    http://www.2cto.com/database/201205/133542.html ORA-12519,TNS:no appropriate service handler found的问 ...

  9. redis学习——day02_redis数据类型

    一.简介 Redis不仅仅是简单的key-value 存储器,同时也是一种data structures server.传统的key-value是指支持使用一个key字符串来索引value字符串的存储 ...

  10. MySQL事务锁等待超时 Lock wait timeout exceeded; try restarting transaction

    工作中处理定时任务分发消息时出现的问题,在查找并解决问题的时候,将相关的问题博客收集整理,在此记录下,以便之后再遇到相同的问题,方便查阅. 问题场景 问题出现的场景: 在消息队列处理消息时,同一事务内 ...