2019-07-28【机器学习】无监督学习之聚类 DBSCAN方法及其应用 (在线大学生上网时间分析)
样本:
import numpy as np
import sklearn.cluster as skc
from sklearn import metrics
import matplotlib.pyplot as plt mac2id = dict()
onlinetimes = []
f = open('D:\python_source\Machine_study\mooc课程数据\课程数据\聚类\学生月上网时间分布-TestData.txt', encoding='utf-8')
for line in f:
mac = line.split(',')[2] #获取mac地址
onlinetime = int(line.split(',')[6]) #上网时间,单位为秒
starttime = int(line.split(',')[4].split(' ')[1].split(':')[0])#源数据为,2014-07-20 22:44:18.540000000,提取出22
if mac not in mac2id:
mac2id[mac] = len(onlinetimes) #字典,key-mac,??value-上网时长和上网时间/0,1,2,3,4,5,6,7
onlinetimes.append((starttime, onlinetime)) else:
onlinetimes[mac2id[mac]] = [(starttime, onlinetime)] real_X = np.array(onlinetimes).reshape((-1, 2)) #二维数组 X = real_X[:, 0:1] #提取出开始时间点
#S = np.log(1 + real_X[:, 1:]) 对数变换
#print(S)
db = skc.DBSCAN(eps=0.01, min_samples=20).fit(X) #lables为每个数据的簇标签
lables = db.labels_ print('Lables:')
print(lables) #分为7类标签
#输出噪点比例
raito = len(lables[lables[:] == -1])/len(lables)
print('Noise raito:', format(raito, '.2%')) n_clusters = len(set(lables)) - (1 if -1 in lables else 0) #噪点为-1,如果有噪点,则7-1==6类 print('Estimated nuber of clusters: %d' %n_clusters)
print("Silhouetts Coefficient: %0.3f" %metrics.silhouette_score(X, lables)) #聚类效果评价指标 for i in range(n_clusters):
print('Cluster', i, ':')
print(list(X[lables == i].flatten())) plt.hist(X, 24)
plt.show()
效果图
2019-07-28【机器学习】无监督学习之聚类 DBSCAN方法及其应用 (在线大学生上网时间分析)的更多相关文章
- 斯坦福机器学习视频笔记 Week8 无监督学习:聚类与数据降维 Clusting & Dimensionality Reduction
监督学习算法需要标记的样本(x,y),但是无监督学习算法只需要input(x). 您将了解聚类 - 用于市场分割,文本摘要,以及许多其他应用程序. Principal Components Analy ...
- <机器学习>无监督学习算法总结
本文仅对常见的无监督学习算法进行了简单讲述,其他的如自动编码器,受限玻尔兹曼机用于无监督学习,神经网络用于无监督学习等未包括.同时虽然整体上分为了聚类和降维两大类,但实际上这两类并非完全正交,很多地方 ...
- 易百教程人工智能python修正-人工智能无监督学习(聚类)
无监督机器学习算法没有任何监督者提供任何指导. 这就是为什么它们与真正的人工智能紧密结合的原因. 在无人监督的学习中,没有正确的答案,也没有监督者指导. 算法需要发现用于学习的有趣数据模式. 什么是聚 ...
- 2019-07-25【机器学习】无监督学习之聚类 K-Means算法实例 (1999年中国居民消费城市分类)
样本 北京,2959.19,730.79,749.41,513.34,467.87,1141.82,478.42,457.64天津,2459.77,495.47,697.33,302.87,284.1 ...
- 2019-07-31【机器学习】无监督学习之聚类 K-Means算法实例 (图像分割)
样本: 代码: import numpy as np import PIL.Image as image from sklearn.cluster import KMeans def loadData ...
- 4.无监督学习--K-means聚类
K-means方法及其应用 1.K-means聚类算法简介: k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低.主要处理过程包括: 1.随机选择k个点作为 ...
- 【机器学习基础】无监督学习(3)——AutoEncoder
前面主要回顾了无监督学习中的三种降维方法,本节主要学习另一种无监督学习AutoEncoder,这个方法在无监督学习领域应用比较广泛,尤其是其思想比较通用. AutoEncoder 0.AutoEnco ...
- Python 机器学习实战 —— 监督学习(上)
前言 近年来AI人工智能成为社会发展趋势,在IT行业引起一波热潮,有关机器学习.深度学习.神经网络等文章多不胜数.从智能家居.自动驾驶.无人机.智能机器人到人造卫星.安防军备,无论是国家级军事设备还是 ...
- Machine Learning Algorithms Study Notes(4)—无监督学习(unsupervised learning)
1 Unsupervised Learning 1.1 k-means clustering algorithm 1.1.1 算法思想 1.1.2 k-means的不足之处 1 ...
随机推荐
- [IROS 2018]Semantic Mapping with Simultaneous Object Detection and Localization
论文地址:https://arxiv.org/abs/1810.11525 论文视频:https://www.youtube.com/watch?v=W-6ViSlrrZgwww.youtu ...
- 微信小程序api封装
写多 之后,吸取之前的经验,瞎写了一个简单的封装api,有幸看到的朋友,就随便看看哈,如果能给到你帮助就一直棒了,额呵呵呵! 新建constant.js和api.js文件 在constant.js中统 ...
- 动态规划-LCS-Uncrossed Lines
2020-02-11 21:14:18 问题描述: 问题求解: 本质就是LCS. public int maxUncrossedLines(int[] A, int[] B) { int len1 = ...
- 【笔记3-24】Python语言基础
环境搭建与语法入门 遇到问题解决问题 积累 英语单词 认真听讲,多敲代码 计算机是什么 计算机的组成 计算机的使用方式 TUI文本交互 GUI图形化交互 windows 的命令行 Shell.Term ...
- Prism 源码解读4-ViewModel注入
介绍 介绍一个Prism的MVVM实现,主要介绍Prism如何在WPF上进行的一些封装,以实现MVVM.MVVM到底是什么呢?看一下这一幅经典的图 以前没有ViewModel这个概念,就是将Model ...
- 粒子群优化算法(PSO)之基于离散化的特征选择(FS)(四)
作者:Geppetto 前面我们介绍了特征选择(Feature Selection,FS)与离散化数据的重要性,介绍了PSO在FS中的重要性和一些常用的方法.FS与离散化的背景,介绍了EPSO与PPS ...
- 一文综述python读写csv xml json文件各种骚操作
Python优越的灵活性和易用性使其成为最受欢迎的编程语言之一,尤其是对数据科学家而言.这在很大程度上是因为使用Python处理大型数据集是很简单的一件事情. 如今,每家科技公司都在制定数据战略. ...
- Python第六章-函数06-高阶函数
函数的高级应用 二.高阶函数 高级函数, 英文叫 Higher-order Function. 那么什么是高阶函数呢? 在说明什么是=高阶函数之前, 我们需要对函数再做进一步的理解! 2.1 函数的本 ...
- Ceph学习笔记(2)- CRUSH数据分布算法
前言: 分布式存储系统需要让数据均匀的分布在集群中的物理设备上,同时在新设备加入,旧设备退出之后让数据重新达到平衡状态尤为重要.新设备加入后,数据要从不同的老设备中迁移过来.老设备退出后,数据迁移 ...
- Reface.AppStarter 框架初探
Reface.AppStarter 是一种基于 .NetFramework 的应用程序启动模式,使用该启动模式,你可以轻松的得到以下功能 : IOC / DI 自动注册与装配 简化配置 垂直模块化你的 ...