BSGS&ExBSGS

求解形如

\[a^x\equiv b\pmod p
\]

的高次同余方程

BSGS

假装\(gcd(a,p)=1\)。

设\(m=\lceil\sqrt p \rceil\)

然后把\(x\)分解成

\[x=i*m+j
\]

的形式。

\[a^x\equiv b\pmod p
\]

\[a^{i*m+j}\equiv b\pmod p
\]

\[a^{im}\equiv b/a^j\pmod p
\]

这时我们发现,\(1≤j≤m-1\),也就是说枚举\(j\)是非常简单的。

这样我们就可以把\(m-1\)个\(j\)全都存起来,存到哈希表中,然后枚举\(i\),这样就可以在\(O(\sqrt n + log (n))\)的时间内求出解了。(分块 + map)

(时间复杂度是wyh在网上找的,自己不会证qwq

ExBSGS

刚刚我们假装\(gcd(a,p)=1\),那要是没有这个条件怎么办呢?

很简单,我们只要通过把两边同时除以 他们的 gcd 就好啦qwq

设\(g=gcd(a,p)\),如果\(g\not| b\),显然如果\(p=1\)则\(x=0\),否则方程无解

我们就得到

\[a^{x-1}*\frac{a}{g}\equiv \frac{b}{g}\pmod {\frac{p}{g}}
\]

\[a^{x-1}\equiv \frac{b}{a}\pmod {\frac{p}{g}}
\]

这样一直做下去,直到\(g=1\)为止。

有一个误区(对于我这种蒟蒻)就是\(a\)和\(b/g\)不一定互质。这是zzy学长告诉wyh的qwq,还是学长好啊qwq。

好感动啊。。。

Code


typedef long long ll;
map<ll,ll> ma;
inline ll bsgs(ll a,ll b)//解a^x同余b (%mod)
{
a%=mod;b%=mod;
ma.clear();
ll m=ll(sqrt(mod+1)),e=1;
for(int j=0;j<m;++j)
{
if(!ma.count(e)) ma[e]=j;
e=e*a%mod;
}
if(gcd(e,mod)!=1) return -1;
ll inv=inverse(e);//逆元
for(int i=0;i<m;++i)
{
if(ma.count(b)) return i*m+ma[b];
b=b*inv%mod;
}
return -1;
}

BSGS&ExBSGS的更多相关文章

  1. BSGS&EXBSGS 大手拉小手,大步小步走

    大步小步走算法处理这样的问题: A^x = B (mod C) 求满足条件的最小的x(可能无解) 其中,A/B/C都可以是很大的数(long long以内) 先分类考虑一下: 当(A,C)==1 即A ...

  2. [note]BSGS & exBSGS

    BSGS (感觉这东西还是要写一下) BSGS主要用于求解形如\(x^k=y\pmod p\)(注意这里p与x互质)这样的方程的最小正整数解的问题 设\(m=\lceil\sqrt p\rceil,k ...

  3. 算法笔记--BSGS && exBSGS 模板

    https://www.cnblogs.com/sdzwyq/p/9900650.html 模板: unordered_map<int, int> mp; LL q_pow(LL n, L ...

  4. BSGS && EXBSGS

    基础BSGS 用处是什么呢w 大步小步发(Baby-Step-Giant-Step,简称BSGS),可以用来高效求解形如\(A^x≡B(mod C)\)(C为素数)的同余方程. 常用于求解离散对数问题 ...

  5. BSGS+exBSGS POJ2417+POJ3243

    a^x=b(mod p)求x,利用分块的思想根号p的复杂度求答案,枚举同余式两端的变量,用hash的方法去找最小的答案(PS:hash看上去很像链式前向星就很有好感).然后如果p不是质数时,就利用同余 ...

  6. Noip前的大抱佛脚----数论

    目录 数论 知识点 Exgcd 逆元 gcd 欧拉函数\(\varphi(x)\) CRT&EXCRT BSGS&EXBSGS FFT/NTT/MTT/FWT 组合公式 斯特林数 卡塔 ...

  7. 各种友(e)善(xin)数论总集(未完待续),从入门到绝望

    目录 快速幂 扩展欧几里得 GCD 扩展欧几里得 同余系列 同余方程 同余方程组 一点想法 高次同余方程 BSGS exBSGS 线性筛素数 埃式筛 欧拉筛 欧拉函数 讲解 两道水题 法雷级数 可见点 ...

  8. REHの收藏列表

    搬运自本人的AcWing,所以那里的文章会挺多. 友链(同类文章) :bztMinamoto 世外明月 mlystdcall 新人手册:AcWing入门使用指南 前言 有看到好文欢迎推荐(毛遂自荐也可 ...

  9. ZROI 2019 暑期游记

    ZROI 游记 在自闭中度过了17天 挖了无数坑,填了一点坑 所以还是有好多坑啊zblzbl 挖坑总集: 时间分治 差分约束 Prufer序列 容斥 树上数据结构 例题C (和后面的例题) 点分 最大 ...

随机推荐

  1. 国外电商网站snapdeal爬取流程

    首页爬取 1.首页获取各个目录的url 如所有优惠all_offers的其中urlhttps://www.snapdeal.com/products/men-apparel-shirts?sort=p ...

  2. 了解Web的相关知识

    一.WWW基础 WWW(world wide web, 万维网)是Internet上基于客户端/服务器体系结构的分布式多平台的超文本超媒体信息服务系统.它利用超文本(hypertext).超媒体(hy ...

  3. 第一周之Hadoop学习(一)

    首先根据网上的教程得搭建一个linux的环境,所以第一部分是下载虚拟机的过程. 参考博客:https://blog.csdn.net/hliq5399/article/details/78193113 ...

  4. hdoj6703 2019 CCPC网络选拔赛 1002 array

    题意 description You are given an array a1,a2,...,an(∀i∈[1,n],1≤ai≤n). Initially, each element of the ...

  5. win10+anaconda安装tensorflow和keras遇到的坑小结

    win10下利用anaconda安装tensorflow和keras的教程都大同小异(针对CPU版本,我的gpu是1050TI的MAX-Q,不知为啥一直没安装成功),下面简单说下步骤. 一 Anaco ...

  6. gitlab两种连接方式:ssh和http配置介绍 --转自 散尽浮华

    gitlab环境部署好后,创建project工程,在本地或远程下载gitlab代码,有两种方式:ssh和http 1)ssh方式:这是一种相对安全的方式 这要求将本地的公钥上传到gitlab中,如下图 ...

  7. Kubernetes 1.17.2 高可用部署

    20.0.0.200    10.0.0.200 bs-k8s-master01 管理节点 2c2g 20.0.0.201    10.0.0.201 bs-k8s-master02 管理节点 2c2 ...

  8. 转:Entity Framework 5.0 Code First全面学习

    Code First 约定 借助 CodeFirst,可通过使用 C# 或Visual Basic .NET 类来描述模型.模型的基本形状可通过约定来检测.约定是规则集,用于在使用 Code Firs ...

  9. windows索引服务

        windows索引服务是windows操作系统提供的桌面搜索引擎,通过预先创建索引来提高对硬盘上文件内容的搜索速度.以windows服务程序的方式运行. 一.工作方式 1.对指定路径下的文件创 ...

  10. Java基于redis实现分布式锁(SpringBoot)

    前言 分布式锁,其实原理是就是多台机器,去争抢一个资源,谁争抢成功,那么谁就持有了这把锁,然后去执行后续的业务逻辑,执行完毕后,把锁释放掉. 可以通过多种途径实现分布式锁,例如利用数据库(mysql等 ...