题意:有向图有N个点,当电车进入交叉口(某点)时,它只能在开关指向的方向离开。 如果驾驶员想要采取其他方式,他/她必须手动更换开关。当驾驶员从路口A驶向路口B时,他/她尝试选择将他/她不得不手动更换开关的次数最小化的路线。

编写一个程序,该程序将计算从交点A到交点B所需的最小开关更改次数。第i个交点处的开关最初指向列出的第一个交点的方向。

分析:对于某点i,去往其直接可到达的点列表中的第一个点时不需要更换开关,等价于边长为0;而其他的点需要更换开关,等价于边长为1。dijkstra裸题。

#include<cstdio>
#include<map>
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
const int MAXN = 100 + 10;
const int INF = 0x3f3f3f3f;
struct Edge{
int from, to, dist;
Edge(int f, int t, int d):from(f), to(t), dist(d){}
};
struct HeapNode{
int d, u;
HeapNode(int dd, int uu):d(dd), u(uu){}
bool operator < (const HeapNode&rhs)const{
return d > rhs.d;
}
};
struct Dijkstra{
int n, m;
vector<int> G[MAXN];
vector<Edge> edges;
bool done[MAXN];
int d[MAXN];
int p[MAXN];
void init(int n){
this -> n = n;
for(int i = 1; i <= n; ++i) G[i].clear();
edges.clear();
}
void AddEdge(int from, int to, int dist){
edges.push_back(Edge(from, to, dist));
m = edges.size();
G[from].push_back(m - 1);
}
void dijkstra(int s){
priority_queue<HeapNode> q;
for(int i = 1; i <= n; ++i) d[i] = INF;
memset(done, false, sizeof done);
d[s] = 0;
q.push(HeapNode(0, s));
while(!q.empty()){
HeapNode top = q.top();
q.pop();
if(done[top.u]) continue;
done[top.u] = true;
int len = G[top.u].size();
for(int i = 0; i < len; ++i){
Edge e = edges[G[top.u][i]];
if(d[top.u] + e.dist < d[e.to]){
d[e.to] = d[top.u] + e.dist;
p[e.to] = G[top.u][i];
q.push(HeapNode(d[e.to], e.to));
}
}
}
}
}dij;
int main(){
int N, A, B;
scanf("%d%d%d", &N, &A, &B);
dij.init(N);
for(int i = 1; i <= N; ++i){
int k, x;
scanf("%d", &k);
for(int j = 0; j < k; ++j){
scanf("%d", &x);
if(j == 0) dij.AddEdge(i, x, 0);
else dij.AddEdge(i, x, 1);
}
}
dij.dijkstra(A);
if(dij.d[B] == INF) printf("-1\n");
else printf("%d\n", dij.d[B]);
return 0;
}

  

POJ - 1847 Tram(dijkstra)的更多相关文章

  1. POJ 1847 Tram (最短路径)

    POJ 1847 Tram (最短路径) Description Tram network in Zagreb consists of a number of intersections and ra ...

  2. POJ 1847 Tram (最短路)

    Tram 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/N Description Tram network in Zagreb ...

  3. (简单) POJ 1847 Tram,Dijkstra。

    Description Tram network in Zagreb consists of a number of intersections and rails connecting some o ...

  4. 迪杰斯特拉(dijkstra)算法的简要理解和c语言实现(源码)

    迪杰斯特拉(dijkstra)算法:求最短路径的算法,数据结构课程中学习的内容. 1 . 理解 算法思想::设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合 ...

  5. 最短路径之迪杰斯特拉(Dijkstra)算法

    迪杰斯特拉(Dijkstra)算法主要是针对没有负值的有向图,求解其中的单一起点到其他顶点的最短路径算法.本文主要总结迪杰斯特拉(Dijkstra)算法的原理和算法流程,最后通过程序实现在一个带权值的 ...

  6. POJ 2431 Expedition(探险)

    POJ 2431 Expedition(探险) Time Limit: 1000MS   Memory Limit: 65536K [Description] [题目描述] A group of co ...

  7. 理解最短路径——迪杰斯特拉(dijkstra)算法

    原址地址:http://ibupu.link/?id=29 1.       迪杰斯特拉算法简介 迪杰斯特拉(dijkstra)算法是典型的用来解决最短路径的算法,也是很多教程中的范例,由荷兰计算机科 ...

  8. POJ 3414 Pots(罐子)

    POJ 3414 Pots(罐子) Time Limit: 1000MS    Memory Limit: 65536K Description - 题目描述 You are given two po ...

  9. POJ 3281 Dining (网络流)

    POJ 3281 Dining (网络流) Description Cows are such finicky eaters. Each cow has a preference for certai ...

随机推荐

  1. Hive的学习之路(理论篇)

    一.Hive介绍 Apache官网给出的logo,一半是Hadoop大象的头,一半是蜜蜂的身体,也是寓意着它是基于Hadoop,哈哈,纯属个人理解,进入正题. Hive是基于Hadoop的一个数据仓库 ...

  2. .hpp 文件

    .hpp 是 Header Plus Plus 的简写,是 C++程序头文件. 其实质就是将.cpp的实现代码混入.h头文件当中,定义与实现都包含在同一文件,则该类的调用者只需要include该hpp ...

  3. RestTemplate HttpMessageConverter报错的解决方案no suitable HttpMessageConverter

    错误 no suitable HttpMessageConverter found for response type and content type [text/html;charset=UTF- ...

  4. 【摘录自MDN】客户端和服务器

    客户端和服务器 连接到互联网的计算机被称作客户端和服务器.下面是一个简单描述它们如何交互的图表: 客户端是典型的Web用户入网设备(比如,你连接了Wi-Fi的电脑,或接入移动网络的手机)和设备上可联网 ...

  5. MySQL高级 InnoDB 和 MyISAM 的区别

    InnoDB:支持事务处理等不加锁读取支持外键支持行锁不支持FULLTEXT类型的索引不保存表的具体行数,扫描表来计算有多少行DELETE 表时,是一行一行的删除InnoDB 把数据和索引存放在表空间 ...

  6. php 基础知识 SESSION 和 COOKIE 的区别

    1,session 在服务器端,cookie 在客户端(浏览器)2,session 默认被存在在服务器的一个文件里(不是内存)3,session 的运行依赖 session id,而 session ...

  7. 笔记-mongodb数据操作

    笔记-mongodb数据操作 1.      数据操作 1.1.    插入 db.COLLECTION_NAME.insert(document) 案例: db.inventory.insertOn ...

  8. 吴裕雄 Bootstrap 前端框架开发——Bootstrap 表格:让表格更加紧凑

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  9. Ionic3记录之核心代码分析

    app.module.ts app的根模块,一些插件的引用需要在这里声明,告诉APP如何组装应用: app.componet.ts app的根组件,主要用来APP启动时和启动后的操作;

  10. mysql mvcc 的理解

    mvcc 全称 multiple version concurrency control 多版本并发控制,是数据库领域比较常用的一种非锁并发技术. mysql 的innodb中,在RR.RC级别会使用 ...