FFT是DFT的高效算法,能够将时域信号转化到频域上,下面记录下一段用python实现的FFT代码。

# encoding=utf-8

import numpy as np
import pylab as pl # 导入和matplotlib同时安装的作图库pylab sampling_rate = 8000 # 采样频率8000Hz
fft_size = 512 # 采样点512,就是说以8000Hz的速度采512个点,我们获得的数据只有这512个点的对应时刻和此时的信号值。
t = np.linspace(0, 1, sampling_rate) # 截取一段时间,截取是任意的,这里取了0~1秒的一段时间。 x = np.sin(2*np.pi*156.25*t) + 2*np.sin(2*np.pi*234.375*t) # 输入信号序列,人工生成了一段信号序列,范围在0~1秒
xs = x[:fft_size] # 由上所述,我们只采样了512个点,所以我们只获得了前512个点的数据
xf = np.fft.rfft(xs)/fft_size # 调用np.fft的函数rfft(用于实值信号fft),产生长度为fft_size/2+1的一个复数向量,分别表示从0Hz~4000Hz的部分,这里之所以是4000Hz是因为Nyquist定理,采样频率8000Hz,则能恢复带宽为4000Hz的信号。最后/fft_size是为了正确显示波形能量 freqs = np.linspace(0, sampling_rate//2, fft_size//2 + 1) # 由上可知,我们得到了数据,现在产生0~4000Hz的频率向量,方便作图
xfp = 20*np.log10(np.clip(np.abs(xf), 1e-20, 1e1000)) # 防止幅值为0,先利用clip剪裁幅度,再化成分贝 pl.figure(figsize=(8, 4)) # 生成画布
pl.subplot(211) # 生成子图,211的意思是将画布分成两行一列,自己居上面。
pl.plot(t[:fft_size], xs) # 对真实波形绘图
pl.xlabel(u"time(s)")
pl.title(u"The Wave and Spectrum of 156.25Hz and 234.375Hz")
pl.subplot(212) # 同理
pl.plot(freqs, xfp) # 对频率和幅值作图,xlabel是频率Hz,ylabel是dB
pl.xlabel(u"Hz")
pl.subplots_adjust(hspace=0.4) # 调节绘图参数
pl.show()

  代码进行了详细标注。有一个小细节是FFT对于取样时间有要求。N点FFT进行精确频谱分析的要求是N个取样点包含整数个取样对象的波形。因此N点FFT能够完美计算频谱,对取样对象的要求是n*Fs/N(n*采样频率/FFT长度)在本例中Fs = 8000Hz,N=512  base_freq=15.625Hz 所以本例中给出了频率为156.25Hz(n=10)和234.375Hz(n=15)做例子。

  效果如下:

FFT快速傅里叶变换的python实现的更多相关文章

  1. CQOI2018 九连环 打表找规律 fft快速傅里叶变换

    题面: CQOI2018九连环 分析: 个人认为这道题没有什么价值,纯粹是为了考算法而考算法. 对于小数据我们可以直接爆搜打表,打表出来我们可以观察规律. f[1~10]: 1 2 5 10 21 4 ...

  2. FFT 快速傅里叶变换 学习笔记

    FFT 快速傅里叶变换 前言 lmc,ikka,attack等众多大佬都没教会的我终于要自己填坑了. 又是机房里最后一个学fft的人 早背过圆周率50位填坑了 用处 多项式乘法 卷积 \(g(x)=a ...

  3. 「学习笔记」FFT 快速傅里叶变换

    目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...

  4. FFT快速傅里叶变换算法

    1.FFT算法概要: FFT(Fast Fourier Transformation)是离散傅氏变换(DFT)的快速算法.即为快速傅氏变换.它是根据离散傅氏变换的奇.偶.虚.实等特性,对离散傅立叶变换 ...

  5. 傅里叶变换通俗解释及快速傅里叶变换的python实现

    通俗理解傅里叶变换,先看这篇文章傅里叶变换的通俗理解! 接下来便是使用python进行傅里叶FFT-频谱分析: 一.一些关键概念的引入 1.离散傅里叶变换(DFT) 离散傅里叶变换(discrete ...

  6. FFT —— 快速傅里叶变换

    问题: 已知A[], B[], 求C[],使: 定义C是A,B的卷积,例如多项式乘法等. 朴素做法是按照定义枚举i和j,但这样时间复杂度是O(n2). 能不能使时间复杂度降下来呢? 点值表示法: 我们 ...

  7. [C++] 频谱图中 FFT快速傅里叶变换C++实现

    在项目中,需要画波形频谱图,因此进行查找,不是很懂相关知识,下列代码主要是针对这篇文章. http://blog.csdn.net/xcgspring/article/details/4749075 ...

  8. matlab中fft快速傅里叶变换

    视频来源:https://www.bilibili.com/video/av51932171?t=628. 博文来源:https://ww2.mathworks.cn/help/matlab/ref/ ...

  9. FFT快速傅里叶变换

    FFT太玄幻了,不过我要先膜拜HQM,实在太强了 1.多项式 1)多项式的定义 在数学中,由若干个单项式相加组成的代数式叫做多项式.多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这 ...

随机推荐

  1. Java——多线程基础知识

    多线程进程和线程的区别:每一个进程拥有自己的一整套变量,而线程则共享数据.java.lang.Thread    static void sleep(long millis) 线程休眠给定的毫秒数,用 ...

  2. Unity实现byte[]合成图像

    bool CreateCovers(byte[] imageData) { Texture2D imageTexture = new Texture2D(273, 126); imageTexture ...

  3. VSCode开发Vue-代码格式化最完美设置

    Vue在VsCode上面的开发,代码格式话是个老大难问题了. 有很多文章介绍Prettier四个配置方法,以及如何启用.但是结果就是:一个一个配完,还是看着难受 现在尝试出一种最完美格式化方式,分享出 ...

  4. 抽象类(abstract class)与抽象方法

    package cm.aff.abst; /* abstract:抽象的,,可以修饰类,方法 1.修饰类: 抽象类: ①不能被实例化 ②有构造器的 ③凡是类都有构造器 ④抽象方法所修饰的类一定是抽象类 ...

  5. 【Java8新特性】不了解Optional类,简历上别说你懂Java8!!

    写在前面 最近,很多读者出去面试都在Java8上栽了跟头,事后自己分析,确实对Java8的新特性一知半解.然而,却在简历显眼的技能部分写着:熟练掌握Java8的各种新特性,能够迅速使用Java8开发高 ...

  6. 多用户vps管理面板怎么安装,有没有好用的vps管理工具

    一.VPS安装VPSMate控制面板步骤 1.使用SSH连接到VPS.使用命令获取VPSMate安装包: wget   http://www.vpsmate.org/tools/install.py ...

  7. InnoSetup汉化版打包工具下载-附带脚本模板

    InnoSetup汉化版打包工具下载地址: https://www.90pan.com/b1907264 脚本模板 ; 脚本用 Inno Setup 脚本向导 生成.; 查阅文档获取创建 INNO S ...

  8. Java实现 LeetCode 306 累加数

    306. 累加数 累加数是一个字符串,组成它的数字可以形成累加序列. 一个有效的累加序列必须至少包含 3 个数.除了最开始的两个数以外,字符串中的其他数都等于它之前两个数相加的和. 给定一个只包含数字 ...

  9. java实现串中找数字

    串中找数字 以下的静态方法实现了:把串s中第一个出现的数字的值返回. 如果找不到数字,返回-1 例如: s = "abc24us43" 则返回2 s = "82445ad ...

  10. java实现第二届蓝桥杯地铁换乘(C++)

    地铁换乘. 为解决交通难题,某城市修建了若干条交错的地铁线路,线路名及其所属站名如stations.txt所示. 线1 苹果园 .... 四惠东 线2 西直门 车公庄 .... 建国门 线4 .... ...