PAT Advanced 1123 Is It a Complete AVL Tree (30) [AVL树]
题目
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node difer by at most one; if at any time they difer by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.
Now given a sequence of insertions, you are supposed to output the level-order traversal sequence of the resulting AVL tree, and to tell if it is a complete binary tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<= 20). Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, insert the keys one by one into an initially empty AVL tree. Then first print in a line the level-order traversal sequence of the resulting AVL tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line. Then in the next line, print “YES” if the tree is complete, or “NO” if not.
Sample Input 1:
5
88 70 61 63 65
Sample Output 1:
70 63 88 61 65
YES
Sample Input 2:
8
88 70 61 96 120 90 65 68
Sample Output 2:
88 65 96 61 70 90 120 68
NO
题目分析
已知平衡二叉树的建树序列,求二叉平衡树的层序序列,并判断是否是完全二叉树
解题思路
- 平衡二叉树建树(左右旋)
- 判断是否是二叉树
思路1:记录每个节点的index,根节点index=i,左子节点index=2i+1,右子节点index=2i+2。判断最后一个节点的index==n-1,相等即为完全二叉树
思路2:出现过NULL值后,若不再出现非NULL节点,即为完全二叉树
Code
Code 01
#include <iostream>
#include <queue>
#include <algorithm>
using namespace std;
struct node {
int data;
int heigh=0;
int index=-1;
node * left=NULL;
node * right=NULL;
node() {}
node(int _data):data(_data) {
heigh=1;
}
};
int getHeigh(node * root) {
if(root==NULL)return 0;
else return root->heigh;
}
int getBalanceFactor(node * root) {
return getHeigh(root->left)-getHeigh(root->right);
}
void updateHeigh(node * root) {
root->heigh=max(getHeigh(root->left),getHeigh(root->right))+1;
}
void L(node * &root) {
node * temp=root->right;
root->right=temp->left;
temp->left = root;
updateHeigh(root);
updateHeigh(temp);
root=temp;
}
void R(node * &root) {
node * temp=root->left;
root->left=temp->right;
temp->right=root;
updateHeigh(root);
updateHeigh(temp);
root = temp;
}
void insert(node * &root, int val) {
if(root==NULL) {
root=new node(val);
return;
}
if(val<root->data) {
insert(root->left,val);
updateHeigh(root);
if(getBalanceFactor(root)==2) {
if(getBalanceFactor(root->left)==1) {
R(root);
} else if (getBalanceFactor(root->left)==-1) {
L(root->left);
R(root);
}
}
} else {
insert(root->right,val);
updateHeigh(root);
if(getBalanceFactor(root)==-2) {
if(getBalanceFactor(root->right)==-1) {
L(root);
} else if (getBalanceFactor(root->right)==1) {
R(root->right);
L(root);
}
}
}
}
vector<node*>nds;
/*
思路一:使用index判断是否完全二叉树
*/
//void levelOrder(node * root){
// queue<node*> q;
// root->index = 0;
// q.push(root);
// while(!q.empty()){
// node * now = q.front();
// q.pop();
// nds.push_back(now);
// if(now->left!=NULL){
// now->left->index=now->index*2+1;
// q.push(now->left);
// }
// if(now->right!=NULL){
// now->right->index=now->index*2+2;
// q.push(now->right);
// }
// }
//}
/*
思路二:出现NULL后不再出现非NULL节点即为完全二叉树
*/
int isComplete = 1, after = 0;
void levelOrder(node *tree) {
queue<node *> queue;
queue.push(tree);
while (!queue.empty()) {
node *temp = queue.front();
queue.pop();
nds.push_back(temp);
if (temp->left != NULL) {
if (after) isComplete = 0;
queue.push(temp->left);
} else {
after = 1;
}
if (temp->right != NULL) {
if (after) isComplete = 0;
queue.push(temp->right);
} else {
after = 1;
}
}
}
bool cmp(node * &n1,node * &n2) {
return n1->index<n2->index;
}
int main(int argc,char * argv[]) {
int n,m;
scanf("%d",&n);
node * root=NULL;
for(int i=0; i<n; i++) {
scanf("%d",&m);
insert(root,m);
}
levelOrder(root);
for(int i=0; i<nds.size(); i++) {
printf("%d",nds[i]->data);
if(i!=nds.size()-1)printf(" ");
else printf("\n");
}
// 思路一:使用index判断是否完全二叉树
// if(nds[n-1]->index==n-1) printf("YES");
// else printf("NO");
// 思路二:出现NULL后不再出现非NULL节点即为完全二叉树
if(isComplete) printf("YES");
else printf("NO");
return 0;
}
PAT Advanced 1123 Is It a Complete AVL Tree (30) [AVL树]的更多相关文章
- PAT甲级题解-1123. Is It a Complete AVL Tree (30)-AVL树+满二叉树
博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6806292.html特别不喜欢那些随便转载别人的原创文章又不给 ...
- PAT (Advanced Level) 1099. Build A Binary Search Tree (30)
预处理每个节点左子树有多少个点. 然后确定值得时候递归下去就可以了. #include<cstdio> #include<cstring> #include<cmath& ...
- PAT甲级1123. Is It a Complete AVL Tree
PAT甲级1123. Is It a Complete AVL Tree 题意: 在AVL树中,任何节点的两个子树的高度最多有一个;如果在任何时候它们不同于一个,则重新平衡来恢复此属性.图1-4说明了 ...
- PAT甲级——1123 Is It a Complete AVL Tree (完全AVL树的判断)
嫌排版乱的话可以移步我的CSDN:https://blog.csdn.net/weixin_44385565/article/details/89390802 An AVL tree is a sel ...
- 1123. Is It a Complete AVL Tree (30)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- PAT甲级1123 Is It a Complete AVL Tree【AVL树】
题目:https://pintia.cn/problem-sets/994805342720868352/problems/994805351302414336 题意: 给定n个树,依次插入一棵AVL ...
- PAT 1123. Is It a Complete AVL Tree (30)
AVL树的插入,旋转. #include<map> #include<set> #include<ctime> #include<cmath> #inc ...
- PAT甲级题解-1066. Root of AVL Tree (25)-AVL树模板题
博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6803291.html特别不喜欢那些随便转载别人的原创文章又不给 ...
- PAT (Advanced Level) 1115. Counting Nodes in a BST (30)
简单题.统计一下即可. #include<cstdio> #include<cstring> #include<cmath> #include<vector& ...
随机推荐
- 08 SSM整合案例(企业权限管理系统):06.产品操作
04.AdminLTE的基本介绍 05.SSM整合案例的基本介绍 06.产品操作 07.订单操作 08.用户操作 09.权限控制 10.权限关联与控制 11.AOP日志 06.产品操作 SSM 环境搭 ...
- 用JS改变embed标签的src属性
思路: A.先隐藏embed标签 B.清除embed元素 C.为embed重新赋值,加入Html页面中 1.html代码 <object id="forfun" classi ...
- maven的概念模型及maven坐标
1.概念模型 项目对象模型:一个maven工程有一个pom.xml文件,通过pom.xml文件定义项目的坐标.项目依赖.项目信息.插件目标等. 依赖管理系统:通过maven的依赖管理对项目所依赖的j ...
- docker image ubuntu12.04 安装软件源
docker 容器为ubuntu12.04 ,无法添加软件源. apt-get install python-software-properties software-properties-commo ...
- 控制台连接oracle11g报ORA-12560异常
oracle11g R2 64bit oracleClient 11.2 32bit PL/SQL Developer 11.0.2 32bit 今天发现了一个奇怪的现象,如图: 后来发现机器上既有s ...
- 十、React 父组件传来值的类型控制propTypes、父组件如果不传值defaultProps
父组件给子组件传值时: 1.defaultProps:父子组件传值中,如果父组件调用子组件的时候不给子组件传值,可以在子组件中使用defaultProps定义的默认值: 2.propTypes:验证父 ...
- spring boot 实战教程
二八法则 - get more with less Java.spring经过多年的发展,各种技术纷繁芜杂,初学者往往不知道该从何下手.其实开发技术的世界也符合二八法则,80%的场景中只有20%的技术 ...
- c++程序—三目运算符
#include<iostream> using namespace std; #include<string> int main() { //三目运算符 ; ; ; c = ...
- Web基础之Maven
Web基础之Maven Maven是一个优秀的项目管理工具,可以很轻松的管理项目. POM和LifeCycle POM:Project Object Model.也就是项目模型,简单来说就是对项目进行 ...
- 每天一点点之 taro 框架开发 - taro静态资源引入
1.说明: taro中客园自由的引用静态资源,不需要安装任何的loader 引用样式文件 通过ES6的import引入 2.引用js文件 import { functionName } from '. ...