opencv3.0机器学习算法使用
//随机树分类
Ptr<StatModel> lpmlBtnClassify::buildRtreesClassifier(Mat data, Mat responses, int ntrain_samples)
{
Ptr<RTrees> model;
Ptr<TrainData> tdata = prepareTrainData(data, responses, ntrain_samples);
model = RTrees::create();
model->setMaxDepth(10);
model->setMinSampleCount(10);
model->setRegressionAccuracy(0);
model->setUseSurrogates(false);
model->setMaxCategories(15);
model->setPriors(Mat());
model->setCalculateVarImportance(false);
model->setTermCriteria(setIterCondition(100, 0.01f));
model->train(tdata);
return model;
}
//adaboost分类
Ptr<StatModel> lpmlBtnClassify::buildAdaboostClassifier(Mat data, Mat responses, int ntrain_samples,int param0)
{
Mat weak_responses;
int i, j, k;
Ptr<Boost> model;
int nsamples_all = data.rows;
int var_count = data.cols;
Mat new_data(ntrain_samples*class_count, var_count + 1, CV_32F);
Mat new_responses(ntrain_samples*class_count, 1, CV_32S);
for (i = 0; i < ntrain_samples; i++)
{
const float* data_row = data.ptr<float>(i);
for (j = 0; j < class_count; j++)
{
float* new_data_row = (float*)new_data.ptr<float>(i*class_count + j);
memcpy(new_data_row, data_row, var_count*sizeof(data_row[0]));
new_data_row[var_count] = (float)j;
new_responses.at<int>(i*class_count + j) = responses.at<int>(i) == j;
}
}
Mat var_type(1, var_count + 2, CV_8U);
var_type.setTo(Scalar::all(VAR_ORDERED));
var_type.at<uchar>(var_count) = var_type.at<uchar>(var_count + 1) = VAR_CATEGORICAL;
Ptr<TrainData> tdata = TrainData::create(new_data, ROW_SAMPLE, new_responses,
noArray(), noArray(), noArray(), var_type);
model = Boost::create();
model->setBoostType(Boost::GENTLE);
model->setWeakCount(param0);
model->setWeightTrimRate(0.95);
model->setMaxDepth(5);
model->setUseSurrogates(false);
model->train(tdata);
return model;
}
//多层感知机分类(ANN)
Ptr<StatModel> lpmlBtnClassify::buildMlpClassifier(Mat data, Mat responses, int ntrain_samples)
{
//read_num_class_data(data_filename, 16, &data, &responses);
Ptr<ANN_MLP> model;
Mat train_data = data.rowRange(0, ntrain_samples);
Mat train_responses = Mat::zeros(ntrain_samples, class_count, CV_32F);
// 1. unroll the responses
for (int i = 0; i < ntrain_samples; i++)
{
int cls_label = responses.at<int>(i);
train_responses.at<float>(i, cls_label) = 1.f;
}
// 2. train classifier
int layer_sz[] = { data.cols, 100, 100, class_count };
int nlayers = (int)(sizeof(layer_sz) / sizeof(layer_sz[0]));
Mat layer_sizes(1, nlayers, CV_32S, layer_sz);
#if 1
int method = ANN_MLP::BACKPROP;
double method_param = 0.001;
int max_iter = 300;
#else
int method = ANN_MLP::RPROP;
double method_param = 0.1;
int max_iter = 1000;
#endif
Ptr<TrainData> tdata = TrainData::create(train_data, ROW_SAMPLE, train_responses);
model = ANN_MLP::create();
model->setLayerSizes(layer_sizes);
model->setActivationFunction(ANN_MLP::SIGMOID_SYM, 0, 0);
model->setTermCriteria(setIterCondition(max_iter, 0));
model->setTrainMethod(method, method_param);
model->train(tdata);
return model;
}
//贝叶斯分类
Ptr<StatModel> lpmlBtnClassify::buildNbayesClassifier(Mat data, Mat responses, int ntrain_samples)
{
Ptr<NormalBayesClassifier> model;
Ptr<TrainData> tdata = prepareTrainData(data, responses, ntrain_samples);
model = NormalBayesClassifier::create();
model->train(tdata);
return model;
}
Ptr<StatModel> lpmlBtnClassify::buildKnnClassifier(Mat data, Mat responses, int ntrain_samples, int K)
{
Ptr<TrainData> tdata = prepareTrainData(data, responses, ntrain_samples);
Ptr<KNearest> model = KNearest::create();
model->setDefaultK(K);
model->setIsClassifier(true);
model->train(tdata);
return model;
}
//svm分类
Ptr<StatModel> lpmlBtnClassify::buildSvmClassifier(Mat data, Mat responses, int ntrain_samples)
{
Ptr<SVM> model;
Ptr<TrainData> tdata = prepareTrainData(data, responses, ntrain_samples);
model = SVM::create();
model->setType(SVM::C_SVC);
model->setKernel(SVM::RBF);
model->setC(1);
model->train(tdata);
return model;
}
opencv3.0机器学习算法使用的更多相关文章
- opencv3中的机器学习算法之:EM算法
不同于其它的机器学习模型,EM算法是一种非监督的学习算法,它的输入数据事先不需要进行标注.相反,该算法从给定的样本集中,能计算出高斯混和参数的最大似然估计.也能得到每个样本对应的标注值,类似于kmea ...
- 在opencv3中的机器学习算法
在opencv3.0中,提供了一个ml.cpp的文件,这里面全是机器学习的算法,共提供了这么几种: 1.正态贝叶斯:normal Bayessian classifier 我已在另外一篇博文中介 ...
- 在opencv3中实现机器学习算法之:利用最近邻算法(knn)实现手写数字分类
手写数字digits分类,这可是深度学习算法的入门练习.而且还有专门的手写数字MINIST库.opencv提供了一张手写数字图片给我们,先来看看 这是一张密密麻麻的手写数字图:图片大小为1000*20 ...
- Spark2.0机器学习系列之1: 聚类算法(LDA)
在Spark2.0版本中(不是基于RDD API的MLlib),共有四种聚类方法: (1)K-means (2)Latent Dirichlet allocation (LDA) ...
- opencv3.0中contrib模块的添加+实现SIFT/SURF算法
平台:win10 x64 +VS 2015专业版 +opencv-3.x.+CMake+Anaconda3(python3.7.0) Issue说明:Opencv3.0版本已经发布了有一段时间,在这段 ...
- Atitit opencv3.0 3.1 3.2 新特性attilax总结
Atitit opencv3.0 3.1 3.2 新特性attilax总结 1. 3.0OpenCV 3 的改动在哪?1 1.1. 模块构成该看哪些模块?2 2. 3.1新特性 2015-12-21 ...
- OpenCV3 Java 机器学习使用方法汇总
原文链接:OpenCV3 Java 机器学习使用方法汇总 前言 按道理来说,C++版本的OpenCV训练的版本XML文件,在java中可以无缝使用.但要注意OpenCV本身的版本问题.从2.4 到3 ...
- 机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理)
前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考 ...
- 建模分析之机器学习算法(附python&R代码)
0序 随着移动互联和大数据的拓展越发觉得算法以及模型在设计和开发中的重要性.不管是现在接触比较多的安全产品还是大互联网公司经常提到的人工智能产品(甚至人类2045的的智能拐点时代).都基于算法及建模来 ...
随机推荐
- ExpandableListActivity的基本使用方法 ,SimpleExpandableListAdapter的基本使用方法
activity_main.xml: <ExpandableListView android:id="@id/android:list" android:layout_wid ...
- Python数据分析在互联网寒冬下,数据分析师还吃香吗?
伴随着移动互联网的飞速发展,越来越多用户被互联网连接在一起,用户所积累下来的数据越来越多,市场对数据方面人才的需求也越来越大,由此也带火了如数据分析.数据挖掘.算法等职业,而作为其中入门门槛相对较低. ...
- Matplotlib 基本概念
章节 Matplotlib 安装 Matplotlib 入门 Matplotlib 基本概念 Matplotlib 图形绘制 Matplotlib 多个图形 Matplotlib 其他类型图形 Mat ...
- vim的几种模式&快捷键
vim的几种模式&快捷键 2017年01月01日 14:05:24 阅读数:3060 一.vim的模式 基本上vim可以分为三种模式:命令模式,插入模式和底行模式,其实vim有多种模式,我们只 ...
- 在CentOS 7环境下安装 Spark
1.下载Spark安装包:http://mirror.bit.edu.cn/apache/spark/ 2.解压Spark的安装包并更改名称: (1)tar -zxvf spark-2.4.3-bin ...
- 【转载】Jmeter关联-正则表达式提取器
今天研发同事提供了一个验证token的接口,要验证token的正确性,现在将整个过程做如下记录: 场景:验证token的正确性 原理:首先用户登录成功后,会在Response head ...
- BusyBox 添加 自定义命令\小程序 (applet)
背景 在做嵌入式开的时候,busybox无疑是非常好用的命令集,所以很多时候都喜欢把busybox移植到我们的系统里面. 说明 添加一个很简单的命令--hello_busybox,输出"He ...
- ubuntu14安装一些常用的软件
1.搜狗输入法: 2.sublime 3. 搜狗输入法在Linux里面还是很正常的,并没有想在windows下那样充斥这各种广告. 在搜狗的官网下载了输入法-->双击安装-->提示存在依赖 ...
- 在 .net 中释放嵌入的资源
private static void ExtractResourceToFile(string resourceName, string filename) { if (!Syste ...
- python用于web题里写解密脚本
题源自bugku里的WEB3 选择选项让他停止,F12后出现如下代码,一看数字就知道是ASC: 复制出来,写pyhton脚本如下,在编译器里跑一下 s='KEY{J2sa42ahJK-HS11III} ...