//随机树分类
Ptr<StatModel> lpmlBtnClassify::buildRtreesClassifier(Mat data, Mat responses, int ntrain_samples)
{

Ptr<RTrees> model;
Ptr<TrainData> tdata = prepareTrainData(data, responses, ntrain_samples);
model = RTrees::create();
model->setMaxDepth(10);
model->setMinSampleCount(10);
model->setRegressionAccuracy(0);
model->setUseSurrogates(false);
model->setMaxCategories(15);
model->setPriors(Mat());
model->setCalculateVarImportance(false);
model->setTermCriteria(setIterCondition(100, 0.01f));
model->train(tdata);

return model;
}

//adaboost分类
Ptr<StatModel> lpmlBtnClassify::buildAdaboostClassifier(Mat data, Mat responses, int ntrain_samples,int param0)
{
Mat weak_responses;
int i, j, k;
Ptr<Boost> model;

int nsamples_all = data.rows;
int var_count = data.cols;

Mat new_data(ntrain_samples*class_count, var_count + 1, CV_32F);
Mat new_responses(ntrain_samples*class_count, 1, CV_32S);

for (i = 0; i < ntrain_samples; i++)
{
const float* data_row = data.ptr<float>(i);
for (j = 0; j < class_count; j++)
{
float* new_data_row = (float*)new_data.ptr<float>(i*class_count + j);
memcpy(new_data_row, data_row, var_count*sizeof(data_row[0]));
new_data_row[var_count] = (float)j;
new_responses.at<int>(i*class_count + j) = responses.at<int>(i) == j;
}
}

Mat var_type(1, var_count + 2, CV_8U);
var_type.setTo(Scalar::all(VAR_ORDERED));
var_type.at<uchar>(var_count) = var_type.at<uchar>(var_count + 1) = VAR_CATEGORICAL;

Ptr<TrainData> tdata = TrainData::create(new_data, ROW_SAMPLE, new_responses,
noArray(), noArray(), noArray(), var_type);

model = Boost::create();
model->setBoostType(Boost::GENTLE);
model->setWeakCount(param0);
model->setWeightTrimRate(0.95);
model->setMaxDepth(5);
model->setUseSurrogates(false);
model->train(tdata);

return model;
}

//多层感知机分类(ANN)
Ptr<StatModel> lpmlBtnClassify::buildMlpClassifier(Mat data, Mat responses, int ntrain_samples)
{
//read_num_class_data(data_filename, 16, &data, &responses);
Ptr<ANN_MLP> model;
Mat train_data = data.rowRange(0, ntrain_samples);
Mat train_responses = Mat::zeros(ntrain_samples, class_count, CV_32F);

// 1. unroll the responses
for (int i = 0; i < ntrain_samples; i++)
{
int cls_label = responses.at<int>(i);
train_responses.at<float>(i, cls_label) = 1.f;
}

// 2. train classifier
int layer_sz[] = { data.cols, 100, 100, class_count };
int nlayers = (int)(sizeof(layer_sz) / sizeof(layer_sz[0]));
Mat layer_sizes(1, nlayers, CV_32S, layer_sz);

#if 1
int method = ANN_MLP::BACKPROP;
double method_param = 0.001;
int max_iter = 300;
#else
int method = ANN_MLP::RPROP;
double method_param = 0.1;
int max_iter = 1000;
#endif

Ptr<TrainData> tdata = TrainData::create(train_data, ROW_SAMPLE, train_responses);
model = ANN_MLP::create();
model->setLayerSizes(layer_sizes);
model->setActivationFunction(ANN_MLP::SIGMOID_SYM, 0, 0);
model->setTermCriteria(setIterCondition(max_iter, 0));
model->setTrainMethod(method, method_param);
model->train(tdata);
return model;
}

//贝叶斯分类
Ptr<StatModel> lpmlBtnClassify::buildNbayesClassifier(Mat data, Mat responses, int ntrain_samples)
{
Ptr<NormalBayesClassifier> model;
Ptr<TrainData> tdata = prepareTrainData(data, responses, ntrain_samples);
model = NormalBayesClassifier::create();
model->train(tdata);

return model;
}

Ptr<StatModel> lpmlBtnClassify::buildKnnClassifier(Mat data, Mat responses, int ntrain_samples, int K)
{
Ptr<TrainData> tdata = prepareTrainData(data, responses, ntrain_samples);
Ptr<KNearest> model = KNearest::create();
model->setDefaultK(K);
model->setIsClassifier(true);
model->train(tdata);

return model;
}

//svm分类
Ptr<StatModel> lpmlBtnClassify::buildSvmClassifier(Mat data, Mat responses, int ntrain_samples)
{
Ptr<SVM> model;
Ptr<TrainData> tdata = prepareTrainData(data, responses, ntrain_samples);
model = SVM::create();
model->setType(SVM::C_SVC);
model->setKernel(SVM::RBF);
model->setC(1);
model->train(tdata);
return model;
}

opencv3.0机器学习算法使用的更多相关文章

  1. opencv3中的机器学习算法之:EM算法

    不同于其它的机器学习模型,EM算法是一种非监督的学习算法,它的输入数据事先不需要进行标注.相反,该算法从给定的样本集中,能计算出高斯混和参数的最大似然估计.也能得到每个样本对应的标注值,类似于kmea ...

  2. 在opencv3中的机器学习算法

    在opencv3.0中,提供了一个ml.cpp的文件,这里面全是机器学习的算法,共提供了这么几种: 1.正态贝叶斯:normal Bayessian classifier    我已在另外一篇博文中介 ...

  3. 在opencv3中实现机器学习算法之:利用最近邻算法(knn)实现手写数字分类

    手写数字digits分类,这可是深度学习算法的入门练习.而且还有专门的手写数字MINIST库.opencv提供了一张手写数字图片给我们,先来看看 这是一张密密麻麻的手写数字图:图片大小为1000*20 ...

  4. Spark2.0机器学习系列之1: 聚类算法(LDA)

    在Spark2.0版本中(不是基于RDD API的MLlib),共有四种聚类方法:      (1)K-means      (2)Latent Dirichlet allocation (LDA)  ...

  5. opencv3.0中contrib模块的添加+实现SIFT/SURF算法

    平台:win10 x64 +VS 2015专业版 +opencv-3.x.+CMake+Anaconda3(python3.7.0) Issue说明:Opencv3.0版本已经发布了有一段时间,在这段 ...

  6. Atitit opencv3.0  3.1 3.2 新特性attilax总结

    Atitit opencv3.0  3.1 3.2 新特性attilax总结 1. 3.0OpenCV 3 的改动在哪?1 1.1. 模块构成该看哪些模块?2 2. 3.1新特性 2015-12-21 ...

  7. OpenCV3 Java 机器学习使用方法汇总

    原文链接:OpenCV3 Java 机器学习使用方法汇总  前言 按道理来说,C++版本的OpenCV训练的版本XML文件,在java中可以无缝使用.但要注意OpenCV本身的版本问题.从2.4 到3 ...

  8. 机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理)

    前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考 ...

  9. 建模分析之机器学习算法(附python&R代码)

    0序 随着移动互联和大数据的拓展越发觉得算法以及模型在设计和开发中的重要性.不管是现在接触比较多的安全产品还是大互联网公司经常提到的人工智能产品(甚至人类2045的的智能拐点时代).都基于算法及建模来 ...

随机推荐

  1. Linux centosVMware 命令 lvm、磁盘故障小案例

    一.lvm命令 LVM:逻辑分区管理,可基于动态的扩展缩小硬件设备的使用空间,注意:lvm磁盘复杂,由于使用lvm,数据丢失恢复起来有一定风险.概念:pv.VG.lvpv(物理卷,有pp基本单位构成) ...

  2. 《C Primer Plus(第6版)(中文版)》普拉达(作者)epub+mobi+azw3

    内容简介 <C Primer Plus(第6版)中文版>详细讲解了C语言的基本概念和编程技巧. <C Primer Plus(第6版)中文版>共17章.第1.2章介绍了C语言编 ...

  3. Oracle笔记--Sql语句

    1.SQL的三种类型语句: --1)DML(Data Manipulation Language)数据操纵语言 --2)DDL(Data Definition Language):数据定义语言 --3 ...

  4. python中单下划线的变量

    1._xxx 不能用于’from module import *’ 以单下划线开头的表示的是protected类型的变量.即保护类型只能允许其本身与子类进行访问.2.__xxx 双下划线的表示的是私有 ...

  5. 使用JavaScript和Canvas打造真实的雨滴效果

    使用JavaScript和Canvas打造真实的雨滴效果 寸志 · 1 年前 我最近搞了一个有趣的项目——rainyday.js .我认为这个项目并不怎么样,而且,事实上这是我第一次尝试接触一些比弹窗 ...

  6. Day3:关于地形生成

    ---恢复内容开始--- 今天桃子好像还是没什么动静,不过媳妇倒是有一点见红~ 希望这是马上要出来的前兆了~ 桃子都已经晃点我俩好多回了~ 已经都快习惯来她这个狼来了的征兆了~ ----------- ...

  7. vue 父组件向子组件传参(笔记)

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. Mysql使用存储过程创建测试数据

    一.概述 存储过程(Stored Procedure)是在大型数据库系统中,一组为了完成特定功能的SQL 语句集.其存储在数据库中,经过第一次编译后调用不需要再次编译,用户通过指定存储过程的名字并给出 ...

  9. Hive的原生部署方式

    一.Hive的部署 1.官方文档 https://cwiki.apache.org/confluence/display/Hive/GettingStarted 2.前提条件 需要安装JDK1.7之上 ...

  10. PAT (Advanced Level) 1136~1139:1136模拟 1137模拟 1138 前序中序求后序 1139模拟

    1136 A Delayed Palindrome(20 分) 题意:给定字符串A,判断A是否是回文串.若不是,则将A反转得到B,A和B相加得C,若C是回文串,则A被称为a delayed palin ...