1.2常用函数

本节目标:掌握在建立和操作神经网络过程中常用的函数

# 常用函数

import tensorflow as tf
import numpy as np # 强制Tensor的数据类型转换
x1 = tf.constant([1,2,3],dtype = tf.float64)
print(x1)
x2 = tf.cast(x1,tf.int32)
print(x2)
# 计算张量中最小的元素
print(tf.reduce_min(x2))
# 计算张量中最大的元素
print(tf.reduce_max(x2))
输出结果:
tf.Tensor([1. 2. 3.], shape=(3,), dtype=float64)
tf.Tensor([1 2 3], shape=(3,), dtype=int32)
tf.Tensor(1, shape=(), dtype=int32)
tf.Tensor(3, shape=(), dtype=int32)
# 理解axis,在一个二位张量或者数组中,可以通过调整axis等于0或者1控制执行维度
# axis=0代表跨行(经度,down),而axis=1跨列(纬度,across)
# 不指定axis,则所有元素参与计算
x = tf.constant([[1,2,3],
[4,5,6]])
print(x)
print(tf.reduce_mean(x)) # 求平均[2,5],平均为3
print(tf.reduce_sum(x,axis = 1)) # 求总和按行操作
输出结果:
tf.Tensor(
[[1 2 3]
[4 5 6]], shape=(2, 3), dtype=int32)
tf.Tensor(3, shape=(), dtype=int32)
tf.Tensor([ 6 15], shape=(2,), dtype=int32)
# tf.Variable()将变量标记为可训练,被标记的变量会在反向传播中被记录梯度信息
w = tf.Variable(tf.random.normal([2,2],mean= 0,stddev =1))
print(w)
输出结果:
<tf.Variable 'Variable:0' shape=(2, 2) dtype=float32, numpy=
array([[ 0.47072804, -0.7259878 ],
[-1.6562318 , 0.15564619]], dtype=float32)>
# 常用的运算函数
# 加法
a = tf.constant([1,2,3],dtype = tf.float32)
b = tf.constant([4,5,6],dtype = tf.float32)
print(tf.add(a,b))
# 减法
print(tf.subtract(a,b))
# 乘法
print(tf.multiply(a,b))
# 除法
print(tf.divide(b,a))
# 平方
print(tf.square(a))
# 次方
print(tf.pow(a,3))
# 开放
print(tf.sqrt(a))
# 矩阵乘法
c = tf.ones([3,2])
d = tf.fill([2,3],6.)
print(tf.matmul(c,d))
输出结果:
tf.Tensor([5. 7. 9.], shape=(3,), dtype=float32)
tf.Tensor([-3. -3. -3.], shape=(3,), dtype=float32)
tf.Tensor([ 4. 10. 18.], shape=(3,), dtype=float32)
tf.Tensor([4. 2.5 2. ], shape=(3,), dtype=float32)
tf.Tensor([1. 4. 9.], shape=(3,), dtype=float32)
tf.Tensor([ 1. 8. 27.], shape=(3,), dtype=float32)
tf.Tensor([1. 1.4142135 1.7320508], shape=(3,), dtype=float32)
tf.Tensor(
[[12. 12. 12.]
[12. 12. 12.]
[12. 12. 12.]], shape=(3, 3), dtype=float32)  
# 切分传入张量的第一维度,生成输入特征/标签配对,构成数据集
features = tf.constant([12,23,10,17])
labels = tf.constant([0,1,1,0])
# 对特征和标签进行一一配对
dataset = tf.data.Dataset.from_tensor_slices((features,labels))
print(dataset)
for element in dataset:
print(element)
输出结果:
<TensorSliceDataset shapes: ((), ()), types: (tf.int32, tf.int32)>
(<tf.Tensor: id=286, shape=(), dtype=int32, numpy=12>, <tf.Tensor: id=287, shape=(), dtype=int32, numpy=0>)
(<tf.Tensor: id=288, shape=(), dtype=int32, numpy=23>, <tf.Tensor: id=289, shape=(), dtype=int32, numpy=1>)
(<tf.Tensor: id=290, shape=(), dtype=int32, numpy=10>, <tf.Tensor: id=291, shape=(), dtype=int32, numpy=1>)
(<tf.Tensor: id=292, shape=(), dtype=int32, numpy=17>, <tf.Tensor: id=293, shape=(), dtype=int32, numpy=0>)
# 求导数运算
with tf.GradientTape() as tape:
w= tf.Variable(tf.constant(3.0))
loss = tf.pow(w,2)
# 对w2求w的倒数
grad = tape.gradient(loss,w)
print(grad)
输出结果:
tf.Tensor(6.0, shape=(), dtype=float32)
# 求导数运算
with tf.GradientTape() as tape:
w= tf.Variable(tf.constant(3.0))
loss = tf.pow(w,2)
# 对w2求w的倒数
grad = tape.gradient(loss,w)
print(grad)
输出结果:
0 one
1 two
2 three
# 独热编码:将张量中的每个元素按照规律独立编码,编码中0为否1为是
labels = tf.constant([0,1,2,3])
classes = 4
output = tf.one_hot(labels,depth = classes)
print(output)
输出结果:
tf.Tensor(
[[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 1.]], shape=(4, 4), dtype=float32)
# 用softmax函数使得输出符合概率分布,将输出用e为底y为指数,求出每个输出的概率
# 对概率进行归一化操作
y = tf.constant([1.01,2.01,-0.66])
y_pro = tf.nn.softmax(y)
print("After softmax,y_pro is:",y_pro)
输出结果:
After softmax,y_pro is: tf.Tensor([0.25598174 0.69583046 0.0481878 ], shape=(3,), dtype=float32)
# 用assign_sub函数对参数进行自更新,赋值操作(更新参数为可训练)
w = tf.Variable(4)
# 对w进行自减一操作w = w -1
w.assign_sub(1)
print(w)
输出结果:
<tf.Variable 'Variable:0' shape=() dtype=int32, numpy=3>

# 返回张量沿指定维度最大值的索引
test = np.array([[1,2,3],
[4,5,6],
[7,8,9],
[10,11,12]])
print(test)
print(tf.argmax(test,axis = 0))
print(tf.argmax(test,axis = 1)) # 判断两个数是否相等,bool类型
correct = tf.equal(1,1)
print(correct)
输出结果:
[[ 1  2  3]
[ 4 5 6]
[ 7 8 9]
[10 11 12]]
tf.Tensor([3 3 3], shape=(3,), dtype=int64)
tf.Tensor([2 2 2 2], shape=(4,), dtype=int64)
tf.Tensor(True, shape=(), dtype=bool) 本节对各个函数运用,对神经网络搭建和操作十分重要,请大家务必掌握。
												

tensorflow2.0学习笔记第一章第二节的更多相关文章

  1. tensorflow2.0学习笔记第一章第一节

    一.简单的神经网络实现过程 1.1张量的生成 # 创建一个张量 #tf.constant(张量内容,dtpye=数据类型(可选)) import tensorflow as tf import num ...

  2. tensorflow2.0学习笔记第一章第四节

    1.4神经网络实现鸢尾花分类 import tensorflow as tf from sklearn import datasets import pandas as pd import numpy ...

  3. tensorflow2.0学习笔记第一章第五节

    1.5简单神经网络实现过程全览

  4. tensorflow2.0学习笔记第一章第三节

    1.3鸢尾花数据读入 # 从sklearn包datasets读入数据 from sklearn import datasets from pandas import DataFrame import ...

  5. PRML学习笔记第一章

    [转] PRML笔记 - 1.1介绍 模式识别的目标 自动从数据中发现潜在规律,以利用这些规律做后续操作,如数据分类等. 模型选择和参数调节 类似的一族规律通常可以以一种模型的形式为表达,选择合适模型 ...

  6. Java 学习笔记 第一章:Java语言开发环境搭建

    第一章:Java语言开发环境搭建 第二章:常量.变量和数据类型 第三章:数据类型转换.运算符和方法入门 1.Java虚拟机——JVM JVM(Java Virtual Machine ):Java虚拟 ...

  7. C语言学习笔记第一章——开篇

    本文章B站有对应视频 (本文图片.部分文字引用c primer plus) 什么是C语言 顾名思义,c语言是一门语言,但是和我们所讲的话不同,它是一门编程语言,是为了让机器可以听懂人的意思所以编写的一 ...

  8. Java学习笔记 第一章 入门<转>

    第一章 JAVA入门 一.基础常识 1.软件开发 什么是软件? 软件:一系列按照特定顺序组织的计算机数据和指令的集合 系统软件:DOS,Windows,Linux 应用软件:扫雷.QQ.迅雷 什么是开 ...

  9. c#高级编程第七版 学习笔记 第一章 .NET体系结构

    第一章      .NET体系结构 本章内容: 编译和运行面向.NET的代码 Microsoft中间语言(Microsoft Intermediate Language,MSIL或简称IL)的优点 值 ...

随机推荐

  1. 9、AutoResponder返回本地数据(mock)

    前言 mock可以说是面试必问的话题的,我第一次接触mock的时候也是一脸懵逼.虽然fiddler工具用了很久,里面的打断点,设置自动返回数据功能都用过.mock说的通俗一点就是模拟返回数据,只是面试 ...

  2. 基于Memcached的Nginx服务器集群session共享

    原料:jdk1.8,tomcat7,nginx1.16,memcached-1.2.6,Mem-Tomcat需要的jar包,基于windows7.所有的点击以下链接可下载 链接:https://pan ...

  3. 什么是virtual string tree?

    Virtual stringtree(以后简称VST)是一个提供源码的免费的第三方插件,支持DELPHI和C++builder,可在http://www.soft-gems.net/下载到最新的版本. ...

  4. ql的python学习之路-day15

    前言:本节主要讲解的是文件路径 在实际的软件开发中会设计一个项目的文件目录,按照执行包bin.配置包config.核心包core等来设计,在执行包里面要运行核心包里的主程序mian,由于不在同一级的目 ...

  5. 【雕爷学编程】零基础Python(01)---“投机取巧”的三条途径

    从3月13日报名尝试上网课学习(4天课8.9元),开始接触Python(中文发音“派森”),到今天有一星期了.这两天广泛搜索了一下相关的学习途径,本着“投机取巧”的出发点,居然小有心得,这里一并分享出 ...

  6. 学习Echarts:(二)异步加载更新

    这部分比较简单,对图表的异步加载和更新,其实只是异步获取数据然后通过setOption传入数据和配置而已. $.get('data.json').done(function (data) { myCh ...

  7. DRF路由组件和渲染器组件

    参考博客:https://www.cnblogs.com/wupeiqi/articles/7805382.html

  8. poj1699 KMP+壮压DP

    Best Sequence Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6338   Accepted: 2461 Des ...

  9. UPD链接实现稳健传输案例

    使用的类    DatagramSocket  用于发送数据和接收数据    此类的构造方法:        DatagramSocket();        DatagramSocket(端口号); ...

  10. MySQL的CHAR 和 VARCHAR的区别

    CHAR 和 VARCHAR 类型,CHAR 列的长度固定, VARCHAR 列中的值为可变长字符串.在检索的时候,CHAR 列删除了尾部的空格,而 VARCHAR 则保留这些空格s