Scrapy入门教程

在本篇教程中,我已经安装好Scrapy

本篇教程中将带您完成下列任务:

  1. 创建一个Scrapy项目
  2. 定义提取的Item
  3. 编写爬取网站的 spider 并提取 Item
  4. 编写 Item Pipeline 来存储提取到的Item(即数据)

创建项目

在开始爬取之前,您必须创建一个新的Scrapy项目。 进入您打算存储代码的目录中,运行下列命令:

scrapy startproject tutorial
tutorial/
scrapy.cfg
tutorial/
__init__.py
items.py
pipelines.py
settings.py
spiders/
__init__.py
...

这些文件分别是:

  • scrapy.cfg: 项目的配置文件
  • tutorial/: 该项目的python模块。之后您将在此加入代码。
  • tutorial/items.py: 项目中的item文件.
  • tutorial/pipelines.py: 项目中的pipelines文件.
  • tutorial/settings.py: 项目的设置文件.
  • tutorial/spiders/: 放置spider代码的目录.

定义Item

Item 是保存爬取到的数据的容器;其使用方法和python字典类似, 并且提供了额外保护机制来避免拼写错误导致的未定义字段错误。

首先根据需要从dmoz.org获取到的数据对item进行建模。 我们需要从dmoz中获取名字,url,以及网站的描述。 对此,在item中定义相应的字段。编辑 tutorial 目录中的 items.py 文件:

import scrapy

class DmozItem(scrapy.Item):
title = scrapy.Field()
link = scrapy.Field()
desc = scrapy.Field()

一开始这看起来可能有点复杂,但是通过定义item, 您可以很方便的使用Scrapy的其他方法。而这些方法需要知道您的item的定义。

编写第一个爬虫(Spider)

Spider是用户编写用于从单个网站(或者一些网站)爬取数据的类。

其包含了一个用于下载的初始URL,如何跟进网页中的链接以及如何分析页面中的内容, 提取生成 item 的方法。

为了创建一个Spider,您必须继承 scrapy.Spider 类, 且定义以下三个属性:

  • name: 用于区别Spider。 该名字必须是唯一的,您不可以为不同的Spider设定相同的名字。
  • start_urls: 包含了Spider在启动时进行爬取的url列表。 因此,第一个被获取到的页面将是其中之一。 后续的URL则从初始的URL获取到的数据中提取。
  • parse() 是spider的一个方法。 被调用时,每个初始URL完成下载后生成的 Response 对象将会作为唯一的参数传递给该函数。 该方法负责解析返回的数据(response data),提取数据(生成item)以及生成需要进一步处理的URL的 Request 对象。

以下为我们的第一个Spider代码,保存在 tutorial/spiders 目录下的 dmoz_spider.py 文件中:

import scrapy

class DmozSpider(scrapy.Spider):
name = "dmoz"
allowed_domains = ["dmoz.org"]
start_urls = [
"http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
"http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
] def parse(self, response):
filename = response.url.split("/")[-2]
with open(filename, 'wb') as f:
f.write(response.body)

爬取

进入项目的根目录,执行下列命令启动spider:

scrapy crawl dmoz

crawl dmoz 启动用于爬取 dmoz.org 的spider,您将得到类似的输出:

2014-01-23 18:13:07-0400 [scrapy] INFO: Scrapy started (bot: tutorial)
2014-01-23 18:13:07-0400 [scrapy] INFO: Optional features available: ...
2014-01-23 18:13:07-0400 [scrapy] INFO: Overridden settings: {}
2014-01-23 18:13:07-0400 [scrapy] INFO: Enabled extensions: ...
2014-01-23 18:13:07-0400 [scrapy] INFO: Enabled downloader middlewares: ...
2014-01-23 18:13:07-0400 [scrapy] INFO: Enabled spider middlewares: ...
2014-01-23 18:13:07-0400 [scrapy] INFO: Enabled item pipelines: ...
2014-01-23 18:13:07-0400 [dmoz] INFO: Spider opened
2014-01-23 18:13:08-0400 [dmoz] DEBUG: Crawled (200) <GET http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/> (referer: None)
2014-01-23 18:13:09-0400 [dmoz] DEBUG: Crawled (200) <GET http://www.dmoz.org/Computers/Programming/Languages/Python/Books/> (referer: None)
2014-01-23 18:13:09-0400 [dmoz] INFO: Closing spider (finished)

查看包含 [dmoz] 的输出,可以看到输出的log中包含定义在 start_urls 的初始URL,并且与spider中是一一对应的。在log中可以看到其没有指向其他页面( (referer:None) )。

除此之外,更有趣的事情发生了。就像我们 parse 方法指定的那样,有两个包含url所对应的内容的文件被创建了: Book , Resources 。

刚才发生了什么?

Scrapy为Spider的 start_urls 属性中的每个URL创建了 scrapy.Request 对象,并将 parse 方法作为回调函数(callback)赋值给了Request。

Request对象经过调度,执行生成 scrapy.http.Response 对象并送回给spider parse() 方法。

提取Item

这里给出XPath表达式的例子及对应的含义:

  • /html/head/title: 选择HTML文档中 <head> 标签内的 <title> 元素
  • /html/head/title/text(): 选择上面提到的 <title> 元素的文字
  • //td: 选择所有的 <td> 元素
  • //div[@class="mine"]: 选择所有具有 class="mine" 属性的 div 元素

Selector有四个基本的方法(点击相应的方法可以看到详细的API文档):

  • xpath(): 传入xpath表达式,返回该表达式所对应的所有节点的selector list列表 。
  • css(): 传入CSS表达式,返回该表达式所对应的所有节点的selector list列表.
  • extract(): 序列化该节点为unicode字符串并返回list。
  • re(): 根据传入的正则表达式对数据进行提取,返回unicode字符串list列表。

在Shell中尝试Selector选择器

为了介绍Selector的使用方法,接下来我们将要使用内置的 Scrapy shell 。Scrapy Shell需要您预装好IPython(一个扩展的Python终端)。

您需要进入项目的根目录,执行下列命令来启动shell:

scrapy shell "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/"

注意:当您在终端运行Scrapy时,请一定记得给url地址加上引号,否则包含参数的url(例如 & 字符)会导致Scrapy运行失败。

shell的输出类似:

[ ... Scrapy log here ... ]

2014-01-23 17:11:42-0400 [default] DEBUG: Crawled (200) <GET http://www.dmoz.org/Computers/Programming/Languages/Python/Books/> (referer: None)
[s] Available Scrapy objects:
[s] crawler <scrapy.crawler.Crawler object at 0x3636b50>
[s] item {}
[s] request <GET http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
[s] response <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
[s] settings <scrapy.settings.Settings object at 0x3fadc50>
[s] spider <Spider 'default' at 0x3cebf50>
[s] Useful shortcuts:
[s] shelp() Shell help (print this help)
[s] fetch(req_or_url) Fetch request (or URL) and update local objects
[s] view(response) View response in a browser In [1]:

当shell载入后,您将得到一个包含response数据的本地 response 变量。输入 response.body 将输出response的包体, 输出 response.headers 可以看到response的包头。

更为重要的是,当输入 response.selector 时, 您将获取到一个可以用于查询返回数据的selector(选择器), 以及映射到 response.selector.xpath() 、 response.selector.css() 的 快捷方法(shortcut): response.xpath() 和 response.css() 。

同时,shell根据response提前初始化了变量 sel 。该selector根据response的类型自动选择最合适的分析规则(XML vs HTML)。

让我们来试试:

In [1]: response.xpath('//title')
Out[1]: [<Selector xpath='//title' data=u'<title>Open Directory - Computers: Progr'>] In [2]: response.xpath('//title').extract()
Out[2]: [u'<title>Open Directory - Computers: Programming: Languages: Python: Books</title>'] In [3]: response.xpath('//title/text()')
Out[3]: [<Selector xpath='//title/text()' data=u'Open Directory - Computers: Programming:'>] In [4]: response.xpath('//title/text()').extract()
Out[4]: [u'Open Directory - Computers: Programming: Languages: Python: Books'] In [5]: response.xpath('//title/text()').re('(\w+):')
Out[5]: [u'Computers', u'Programming', u'Languages', u'Python']

在我们的spider中加入这段代码:

一般来说,Spider将会将爬取到的数据以 Item 对象返回。所以为了将爬取的数据返回,我们最终的代码将是:

import scrapy

from tutorial.items import DmozItem

class DmozSpider(scrapy.Spider):
name = "dmoz"
allowed_domains = ["dmoz.org"]
start_urls = [
"http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
"http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
] def parse(self, response):
for sel in response.xpath('//ul/li'):
item = DmozItem()
item['title'] = sel.xpath('a/text()').extract()
item['link'] = sel.xpath('a/@href').extract()
item['desc'] = sel.xpath('text()').extract()
yield item

现在尝试再次爬取dmoz.org,您将看到爬取到的网站信息被成功输出:

scrapy crawl dmoz
[dmoz] DEBUG: Scraped from <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
{'desc': [u' - By David Mertz; Addison Wesley. Book in progress, full text, ASCII format. Asks for feedback. [author website, Gnosis Software, Inc.\n],
'link': [u'http://gnosis.cx/TPiP/'],
'title': [u'Text Processing in Python']}
[dmoz] DEBUG: Scraped from <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
{'desc': [u' - By Sean McGrath; Prentice Hall PTR, 2000, ISBN 0130211192, has CD-ROM. Methods to build XML applications fast, Python tutorial, DOM and SAX, new Pyxie open source XML processing library. [Prentice Hall PTR]\n'],
'link': [u'http://www.informit.com/store/product.aspx?isbn=0130211192'],
'title': [u'XML Processing with Python']}

保存爬取到的数据

scrapy crawl dmoz -o items.json

该命令将采用 JSON 格式对爬取的数据进行序列化,生成 items.json 文件。

或者保存到Item_pipelines文件中

# -*- coding: utf-8 -*-
import json class TencentPipeline(object):
  """
功能:保存item数据
"""
def __init__(self):
self.filename = open("tencent.json", "w") def process_item(self, item, spider):
text = json.dumps(dict(item), ensure_ascii = False) + ",\n"
self.filename.write(text.encode("utf-8"))
return item def close_spider(self, spider):
self.filename.close()

然后进行settings文件设置(主要设置内容)

l# 设置请求头部,添加url
DEFAULT_REQUEST_HEADERS = {
"User-Agent" : "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0;",
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8'
} # 设置item——pipelines
ITEM_PIPELINES = {
'tutoria.pipelines.TencentPipeline': 300,
}

Scrapy 框架 入门教程的更多相关文章

  1. CodeIgniter框架入门教程——第一课 Hello World!

    本文转载自:http://www.softeng.cn/?p=45 今天开始,我将在这里连载由我自己编写的<CodeIgniter框架入门教程>,首先,这篇教程的读着应该是有PHP基础的编 ...

  2. Java - Struts框架教程 Hibernate框架教程 Spring框架入门教程(新版) sping mvc spring boot spring cloud Mybatis

    https://www.zhihu.com/question/21142149 http://how2j.cn/k/hibernate/hibernate-tutorial/31.html?tid=6 ...

  3. Go-Micro框架入门教程(一)---框架结构

    Go语言微服务系列文章,使用golang实现微服务,这里选用的是go-micro框架,本文主要是对该框架的一个架构简单介绍. 1. 概述 go-micro是go语言下的一个很好的微服务框架. 1.服务 ...

  4. scrapy爬虫框架入门教程

    scrapy安装请参考:安装指南. 我们将使用开放目录项目(dmoz)作为抓取的例子. 这篇入门教程将引导你完成如下任务: 创建一个新的Scrapy项目 定义提取的Item 写一个Spider用来爬行 ...

  5. 爬虫入门(四)——Scrapy框架入门:使用Scrapy框架爬取全书网小说数据

    为了入门scrapy框架,昨天写了一个爬取静态小说网站的小程序 下面我们尝试爬取全书网中网游动漫类小说的书籍信息. 一.准备阶段 明确一下爬虫页面分析的思路: 对于书籍列表页:我们需要知道打开单本书籍 ...

  6. Scrapy 框架入门简介

    一.Scrapy框架简介 Scrapy 是用 Python 实现的一个为了爬取网站数据.提取结构性数据而编写的应用框架. Scrapy 常应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中. ...

  7. Python爬虫Scrapy框架入门(2)

    本文是跟着大神博客,尝试从网站上爬一堆东西,一堆你懂得的东西 附上原创链接: http://www.cnblogs.com/qiyeboy/p/5428240.html 基本思路是,查看网页元素,填写 ...

  8. Python爬虫Scrapy框架入门(1)

    也许是很少接触python的原因,我觉得是Scrapy框架和以往Java框架很不一样:它真的是个框架. 从表层来看,与Java框架引入jar包.配置xml或.property文件不同,Scrapy的模 ...

  9. scrapy框架使用教程

    scrapy框架真的是很强大.非常值得学习一下.本身py就追求简洁,所以本身代码量很少却能写出很强大的功能.对比java来说.不过py的语法有些操蛋,比如没有智能提示.动态语言的通病.我也刚学习不到1 ...

随机推荐

  1. c++指定输出小数的精度

    在c++中,有的时候要对输出的double型或float型保留几位小数,这时可以使用setflags(ios::fixed),不过要先包含有文件<iomainp>,具体如下 例: #inc ...

  2. 使用 GoLand 启动 运行 Go 项目

    来源:https://my.oschina.net/u/3744526/blog/3085468 在使用本博客经验之前 需配置好 GOPATH 跟 GOROOT 创建好本地工作路径之后,使用 GoLa ...

  3. iconv 参数详解

    参数详解: $row [] = iconv('utf-8', 'GB2312//IGNORE', $value['message']); iconv ( string $in_charset , st ...

  4. 引入OpenCV导致私有内存巨大

    引入OpenCV导致私有内存巨大 opencvC++VS2015 说明 在调试程序的时候 发现自己的程序在VS的调试窗口占用很高, 花时间关注了一下这个问题, 手动写了小的程序复现这个问题,最终确定了 ...

  5. 都2020年了,这5个java IDE神器你还不知道?

    TIOBE的4月份编程语言排行榜出来了,java还是稳坐第一位,java最新的版本也到了13,一直以来java凭借其企业级应用的优势和大量的框架级应用俘获了大量的粉丝和企业客户. 谈到开发者,java ...

  6. 构建密钥验证ssh

    1.需要两个虚拟机,每一个创建一个用户登录到用户根下   2.每个用户都要创建密钥对   3.把两个用户的公用密钥用ssh-copy-id -i 命令将公用的密钥复制到另一个用户中   4.在客户端开 ...

  7. 8.Python中装饰器是什么?

    Python中装饰器是什么? A Python decorator is a specific change that we make in Python syntax to alter functi ...

  8. HDU 1233 最小生成树模板题,练练模板

    还是畅通工程 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Sub ...

  9. windows下flume 采集如何支持TAILDIR和tail

    一.问题:Windows 下 flume采集配置TAILDIR的时候,会报如下错误: agent.sources.seqGenSrc.type = TAILDIR agent.sources.seqG ...

  10. Java——Java面向对象

    该系列博文会告诉你如何从入门到进阶,一步步地学习Java基础知识,并上手进行实战,接着了解每个Java知识点背后的实现原理,更完整地了解整个Java技术体系,形成自己的知识框架. 概述: Java是面 ...