Keras 多层感知机 多类别的 softmax 分类模型代码
Multilayer Perceptron (MLP) for multi-class softmax classification:
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD
# 生成随机数据
import numpy as np
x_train = np.random.random((1000, 20))
y_train = keras.utils.to_categorical(np.random.randint(10, size=(1000, 1)), num_classes=10)
x_test = np.random.random((100, 20))
y_test = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10)
model = Sequential()
# Dense(64) is a fully-connected layer with 64 hidden units.
# in the first layer, you must specify the expected input data shape:
# here, 20-dimensional vectors.
model.add(Dense(64, activation='relu', input_dim=20))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
optimizer=sgd,
metrics=['accuracy'])
model.fit(x_train, y_train,
epochs=20,
batch_size=128)
score = model.evaluate(x_test, y_test, batch_size=128)
更多教程:http://www.tensorflownews.com/
Keras 多层感知机 多类别的 softmax 分类模型代码的更多相关文章
- 【Keras案例学习】 多层感知机做手写字符分类(mnist_mlp )
from __future__ import print_function # 导入numpy库, numpy是一个常用的科学计算库,优化矩阵的运算 import numpy as np np.ran ...
- keras多层感知机MLP
肯定有人要说什么多层感知机,不就是几个隐藏层连接在一起的吗.话是这么说,但是我觉得我们首先要自己承认自己高级,不然怎么去说服(hu nong)别人呢 from keras.models import ...
- 多层感知机MLP的gluon版分类minist
MLP_Gluon .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { bord ...
- (数据科学学习手札44)在Keras中训练多层感知机
一.简介 Keras是有着自主的一套前端控制语法,后端基于tensorflow和theano的深度学习框架,因为其搭建神经网络简单快捷明了的语法风格,可以帮助使用者更快捷的搭建自己的神经网络,堪称深度 ...
- 深度学习:多层感知机和异或问题(Pytorch实现)
感知机模型 假设输入空间\(\mathcal{X}\subseteq \textbf{R}^n\),输出空间是\(\mathcal{Y}=\{-1,+1\}\).输入\(\textbf{x}\in \ ...
- 动手学深度学习10- pytorch多层感知机从零实现
多层感知机 定义模型的参数 定义激活函数 定义模型 定义损失函数 训练模型 小结 多层感知机 import torch import numpy as np import sys sys.path.a ...
- [ DLPytorch ] 线性回归&Softmax与分类模型&多层感知机
线性回归 基础知识 实现过程 学习笔记 批量读取 torch_data = Data.TensorDataset(features, labels) dataset = Data.DataLoader ...
- TensorFlow实现多层感知机MINIST分类
TensorFlow实现多层感知机MINIST分类 TensorFlow 支持自动求导,可以使用 TensorFlow 优化器来计算和使用梯度.使用梯度自动更新用变量定义的张量.本文将使用 Tenso ...
- Tensorflow 2.0 深度学习实战 —— 详细介绍损失函数、优化器、激活函数、多层感知机的实现原理
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只 ...
随机推荐
- C++银行储蓄程序代码
*/ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:text.cpp * 作者:常轩 * 微信公众号:Worldhe ...
- 这几个IDEA高级调试技巧,用完就是香
一个项目启动两次 测试分布式项目时,经常要一个项目启动2次,不用将一个项目打开多次启动,配置一下即可 1.点击Edit Configurations 2.勾选Allow parallel run 3. ...
- EOS2.0环境搭建-centos7
需要安装启动的有三个组件 nodes,keosd,cleos,看看三者的关系 nodeos:核心程序,用于启动eos节点服务,在后台运行,可以配置不同 插件.该进程负责账户管理.区块生成.共识建立,并 ...
- 全网最详细的一篇Flutter 尺寸限制类容器总结
Flutter中尺寸限制类容器组件包括ConstrainedBox.UnconstrainedBox.SizedBox.AspectRatio.FractionallySizedBox.Limited ...
- 我的webpack学习笔记(二)
前言 上一篇文章我们讲了多页面js的打包,本篇文章我们继续scss的打包. 多页面css单独打包 首先,我们css编写采用的是sass,所以我们先来安装sass-loader以及可以用到的依赖 $ n ...
- 三个值得期待的JavaScript新功能!
让我们来看看JavaScript中一些有用的即将推出的功能.您将看到他们的语法,链接以及时了解他们的进度,我们将编写一个小型测试套件,以展示如何立即开始使用这些提案! JavaScript是如何更新迭 ...
- 并发工具类的使用 CountDownLatch,CyclicBarrier,Semaphore,Exchanger
1.CountDownLatch 允许一个或多个线程等待直到在其他线程中执行的一组操作完成的同步辅助. A CountDownLatch用给定的计数初始化. await方法阻塞,直到由于countDo ...
- PHP的json_encode和json_decode的区别
经常搞混的两个PHP函数: json_encode()是对变量进行json编码 json_encode()为要编码的值,且该函数只对utf8编码的数据有效 json_decode($json)对jso ...
- Vue2.0 【第二季】第3节 Vue.set全局操作
目录 Vue2.0 [第二季]第3节 Vue.set全局操作 第3节:Vue.set全局操作 一.引用构造器外部数据 二.在外部改变数据的三种方法: 三.为什么要有Vue.set的存在? Vue2.0 ...
- css 实战技巧
css 看起来比较简单,但是要想做的好也不是那么容易,我们在平时开发中,主要用css 来美化我们的html结构,所有我觉得css 还是挺重要的,这里记录整理一些关于css 的技巧以及容易忘记的知识点. ...