OpenCV-Python 图像金字塔 | 二十
目标
在本章中,
- 我们将学习图像金字塔
- 我们将使用图像金字塔创建一个新的水果“Orapple”
- 我们将看到以下功能:cv.pyrUp(),cv.pyrDown()
理论
通常,我们过去使用的是恒定大小的图像。但是在某些情况下,我们需要使用不同分辨率的(相同)图像。例如,当在图像中搜索某些东西(例如人脸)时,我们不确定对象将以多大的尺寸显示在图像中。在这种情况下,我们将需要创建一组具有不同分辨率的相同图像,并在所有图像中搜索对象。这些具有不同分辨率的图像集称为“图像金字塔”(因为当它们堆叠在底部时,最高分辨率的图像位于顶部,最低分辨率的图像位于顶部时,看起来像金字塔)。
有两种图像金字塔。1)高斯金字塔和2)拉普拉斯金字塔
高斯金字塔中的较高级别(低分辨率)是通过删除较低级别(较高分辨率)图像中的连续行和列而形成的。然后,较高级别的每个像素由基础级别的5个像素的贡献与高斯权重形成。通过这样做,M×NM×NM×N图像变成M/2×N/2M/2 × N/2M/2×N/2图像。因此面积减少到原始面积的四分之一。它称为Octave。当我们在金字塔中越靠上时(即分辨率下降),这种模式就会继续。同样,在扩展时,每个级别的面积变为4倍。我们可以使用cv.pyrDown()和cv.pyrUp()函数找到高斯金字塔。
img = cv.imread('messi5.jpg')
lower_reso = cv.pyrDown(higher_reso)
以下是图像金字塔中的4个级别。
现在,您可以使用cv.pyrUp()函数查看图像金字塔。
higher_reso2 = cv.pyrUp(lower_reso)
记住,higher_reso2不等于higher_reso,因为一旦降低了分辨率,就会丢失信息。下面的图像是3层的金字塔从最小的图像在前面的情况下创建。与原图对比:
拉普拉斯金字塔由高斯金字塔形成。没有专用功能。拉普拉斯金字塔图像仅像边缘图像。它的大多数元素为零。它们用于图像压缩。拉普拉斯金字塔的层由高斯金字塔的层与高斯金字塔的高层的扩展版本之间的差形成。拉普拉斯等级的三个等级如下所示(调整对比度以增强内容):
使用金字塔进行图像融合
金字塔的一种应用是图像融合。例如,在图像拼接中,您需要将两个图像堆叠在一起,但是由于图像之间的不连续性,可能看起来不太好。在这种情况下,使用金字塔混合图像可以无缝混合,而不会在图像中保留大量数据。一个经典的例子是将两种水果,橙和苹果混合在一起。现在查看结果本身,以了解我在说什么:
请检查其他资源中的第一个参考,它具有图像混合,拉普拉斯金字塔等的完整图解详细信息。只需完成以下步骤即可:
- 加载苹果和橙子的两个图像
- 查找苹果和橙子的高斯金字塔(在此示例中, 级别数为6)
- 在高斯金字塔中,找到其拉普拉斯金字塔
- 然后在每个拉普拉斯金字塔级别中加入苹果的左半部分和橙子的右半部分
- 最后从此联合图像金字塔中重建原始图像。
下面是完整的代码。(为简单起见,每个步骤都是单独进行的,这可能会占用更多的内存。如果需要,可以对其进行优化)。
import cv2 as cv
import numpy as np,sys
A = cv.imread('apple.jpg')
B = cv.imread('orange.jpg')
# 生成A的高斯金字塔
G = A.copy()
gpA = [G]
for i in xrange(6):
G = cv.pyrDown(G)
gpA.append(G)
# 生成B的高斯金字塔
G = B.copy()
gpB = [G]
for i in xrange(6):
G = cv.pyrDown(G)
gpB.append(G)
# 生成A的拉普拉斯金字塔
lpA = [gpA[5]]
for i in xrange(5,0,-1):
GE = cv.pyrUp(gpA[i])
L = cv.subtract(gpA[i-1],GE)
lpA.append(L)
# 生成B的拉普拉斯金字塔
lpB = [gpB[5]]
for i in xrange(5,0,-1):
GE = cv.pyrUp(gpB[i])
L = cv.subtract(gpB[i-1],GE)
lpB.append(L)
# 现在在每个级别中添加左右两半图像
LS = []
for la,lb in zip(lpA,lpB):
rows,cols,dpt = la.shape
ls = np.hstack((la[:,0:cols/2], lb[:,cols/2:]))
LS.append(ls)
# 现在重建
ls_ = LS[0]
for i in xrange(1,6):
ls_ = cv.pyrUp(ls_)
ls_ = cv.add(ls_, LS[i])
# 图像与直接连接的每一半
real = np.hstack((A[:,:cols/2],B[:,cols/2:]))
cv.imwrite('Pyramid_blending2.jpg',ls_)
cv.imwrite('Direct_blending.jpg',real)
##
附加资源
- Image Blending:http://pages.cs.wisc.edu/~csverma/CS766_09/ImageMosaic/imagemosaic.html
欢迎关注磐创博客资源汇总站:
http://docs.panchuang.net/
欢迎关注PyTorch官方中文教程站:
http://pytorch.panchuang.net/
OpenCV中文官方文档:
http://woshicver.com/
OpenCV-Python 图像金字塔 | 二十的更多相关文章
- 11、OpenCV Python 图像金字塔
__author__ = "WSX" import cv2 as cv import numpy as np # 高斯金字塔 #金字塔 原理 ==> 高斯模糊+ 降采样 #金 ...
- opencv python 图像二值化/简单阈值化/大津阈值法
pip install matplotlib 1简单的阈值化 cv2.threshold第一个参数是源图像,它应该是灰度图像. 第二个参数是用于对像素值进行分类的阈值, 第三个参数是maxVal,它表 ...
- 10、OpenCV Python 图像二值化
__author__ = "WSX" import cv2 as cv import numpy as np #-----------二值化(黑0和白 255)---------- ...
- Appium+python自动化(二十五)- 那些让人抓耳挠腮、揪头发和掉头发的事 - 获取控件ID(超详解)
简介 在前边的第二十二篇文章里,已经分享了通过获取控件的坐标点来获取点击事件的所需要的点击位置,那么还有没有其他方法来获取控件点击事件所需要的点击位置呢?答案是:Yes!因为在不同的大小屏幕的手机上获 ...
- Python学习(二十六)—— Django基础一
转载自:http://www.cnblogs.com/liwenzhou/p/8258992.html 一.Web框架本质 我们可以这样理解:所有的Web应用本质上就是一个socket服务端,而用户的 ...
- Py修行路 python基础 (二十五)线程与进程
操作系统是用户和硬件沟通的桥梁 操作系统,位于底层硬件与应用软件之间的一层 工作方式:向下管理硬件,向上提供接口 操作系统进行切换操作: 把CPU的使用权切换给不同的进程. 1.出现IO操作 2.固定 ...
- Appium+python自动化(二十四)- 白素贞千年等一回许仙 - 元素等待(超详解)
简介 许仙小时候最喜欢吃又甜又软的汤圆了,一次一颗汤圆落入西湖,被一条小白蛇衔走了.十几年后,一位身着白衣.有青衣丫鬟相伴的美丽女子与许仙相识了,她叫白娘子.白娘子聪明又善良,两个人很快走到了一起.靠 ...
- Python学习(二十二)—— 前端基础之BOM和DOM
转载自http://www.cnblogs.com/liwenzhou/p/8011504.html 一.前言 到目前为止,我们已经学过了JavaScript的一些简单的语法.但是这些简单的语法,并没 ...
- Python学习(二十) —— 前端之CSS
转载自http://www.cnblogs.com/liwenzhou/p/7999532.html 一.CSS介绍 CSS(Cascading Style Sheet,层叠样式表)定义如何显示HTM ...
随机推荐
- Oracle密码验证函数与Create Profile
今天看到了一个oracle密码函数的东西,就在网上找文档自己做测试,刚开始看不懂,最后做完记录一下 密码函数的作用就是要将用户密码进行限制,比如申请一个网站的账号的时候,密码会要求你不少于8位,必须要 ...
- Scrum模拟微信看一看“疫情专区”的敏捷开发过程
无论作为产品用户还是管理咨询顾问,都非常非常喜欢微信.自认感情比较克制属于“高冷”挂,但从很多方面都太佩服太崇拜张小龙了(新书里微信也会是最喜欢的案例之一,真的不只是一个产品而已,很多方面都太牛了). ...
- 深度学习遥感影像(哨兵2A/B)超分辨率
这段时间,用到了哨兵影像,遇到了一个问题,就是哨兵影像,它的RGB/NIR波段是10米分辨率的,但是其他波段是20米和60米的,这就需要pansharpening了,所以我们需要设计一种算法来进行解决 ...
- 搭建websocket消息推送服务,必须要考虑的几个问题
近年,不论是正在快速增长的直播,远程教育以及IM聊天场景,还是在常规企业级系统中用到的系统提醒,对websocket的需求越来越大,对websocket的要求也越来越高.从早期对websocket的应 ...
- 一个轻量级的基于 .NET Core 的 ORM 框架 HSQL
HSQL 是一种轻量级的基于 .NET Core 的数据库对象关系映射「ORM」框架 HSQL 是一种可以使用非常简单且高效的方式进行数据库操作的一种框架,通过简单的语法,使数据库操作不再成为难事.目 ...
- 【原创】(四)Linux进程调度-组调度及带宽控制
背景 Read the fucking source code! --By 鲁迅 A picture is worth a thousand words. --By 高尔基 说明: Kernel版本: ...
- vue 点击跳转路由设置
刚接触 知道有两种方法,一种是用路由,一种是原生js的 <a @click="handleClick"></a> methods:function(){ h ...
- 实验二——Linux系统简单文件操作命令
项目 内容 这个作业属于那个课程 这里是链接 作业要求在哪里 这里是链接 学号-姓名 17041506-张政 作业学习目标 学习在Linux系统终端下进行命令行操作,掌握常用命令行操作并能通过命令行操 ...
- 【小程序】---- input获得焦点时placeholder重影BUG
问题小程序的input组件有个自身的bug,即当输入框获取焦点时placeholder内容会出现重影现象. 解决思路原理:将placeholder内容单独写在另外的标签里,控制其显示隐藏.操作:将代表 ...
- mybatis进阶案例之多表查询
mybatis进阶案例之多表查询 一.mybatis中表之间的关系 在数据库中,实体型之间的关系主要有如下几种: 1.一对一 如果对于实体集A中的每一个实体,实体集B中至多有一个(也可以没有)实体与之 ...