cs231n spring 2017 lecture4 Introduction to Neural Networks
1. Backpropagation:沿着computational graph利用链式法则求导。每个神经元有两个输入x、y,一个输出z,好多层这种神经元连接起来,这时候已知∂L/∂z,可以求出∂L/∂x = ∂L/∂z * ∂z/∂x,∂L/∂y = ∂L/∂z * ∂z/∂y。靠这种方式可以计算出最终的loss function相对于最开始的输入的导数。
这种方法的好处是,每个神经元都是很简单的运算(比如加、减、乘、除、指数、sigmoid等),它们导数的解析式是很容易求解的,用链式法则连乘起来就得到了我们需要的导数。如果直接求的话会很复杂很难求。
2. Add(x, y)是gradient distributor,把后面神经元的导数反向传递给x和y。
Max(x, y)是gradient router,它只会反向传递给x、y中大的那一个。可以这么直观的理解,由于只有x、y中大的那个数被传递到后面的神经元对最后结果产生影响,所以在反向传递的时候,也只会评估x、y中大的那个数。
Mul(x, y)是gradient switcher,它把后面神经元的导数分别传递给x和y,传给x的部分乘以y,传给y的部分乘以x。
想想求导公式就明白了。
3. 对于一个输入x,两个输出y、z的神经元,反向传递求导的时候,是把从y和z两路反向传递过来的导数求和。
4. 如果x、y、z等元素都不是标量,而是向量,则求导全部都变成了雅克比矩阵。对于一个4096维输入,4096维输出的系统,雅克比大小为4096*4096,如果minibatch里100个采样,则雅克比变成了409600*409600大小,运算很麻烦。但如果知道输出的某个元素只和输入的某些元素相关,则求偏导的时候只有相关项有值,其他都是0,这个性质可以被用来加速计算。极端的情况,如果输入和输出一一对应,则雅克比是对角矩阵。
5. 深度学习框架(比如Caffe等)的API里,会定义不同的layer,每种layer就是搭神经网络的积木(也就是上文说的神经元节点),每种layer会有自己的forward()/backward()函数,分别用来正向的从输入求出输出,和反向的求loss funciton对这个节点输入的导数。
6. 神经网络,从函数的角度说就是复合函数,把简单函数一层层堆叠起来。例如线性函数f=Wx,则两层的神经网络可能是f=W2max(0,W1x),三层的网络可能是f=W3max(0, W2max(0,W1x))。直观地说,比如在物体分类的问题中,第一层网络训练出的权重可能是一个红色的车的template,而第二层网络的权重可能是不同的颜色,这样两层网络就实现了泛化预测各种颜色的车的目的。
7. 从生物学的角度看,sigmoid函数是非常有道理的,它意味着输入进来的信号不够强的时候输出为0,神经元没有被激活,足够强之后,神经元被激活从而产生输出。ReLU:f(x) = max(0, x)也是同样的想法。这些都是“激活函数”。所以深度学习中实际构造的神经元,通常是一个线性单元复合一个激活函数sigmoid(Wx+b)。
8. 虽然深度学习从脑科学得到了很多启发,但是我们要谨慎的把两者做直接类比,因为生物神经元要复杂的多。
cs231n spring 2017 lecture4 Introduction to Neural Networks的更多相关文章
- cs231n spring 2017 lecture4 Introduction to Neural Networks 听课笔记
1. Backpropagation:沿着computational graph利用链式法则求导.每个神经元有两个输入x.y,一个输出z,好多层这种神经元连接起来,这时候已知∂L/∂z,可以求出∂L/ ...
- cs231n spring 2017 lecture1 Introduction to Convolutional Neural Networks for Visual Recognition 听课笔记
1. 生物学家做实验发现脑皮层对简单的结构比如角.边有反应,而通过复杂的神经元传递,这些简单的结构最终帮助生物体有了更复杂的视觉系统.1970年David Marr提出的视觉处理流程遵循这样的原则,拿 ...
- cs231n spring 2017 lecture1 Introduction to Convolutional Neural Networks for Visual Recognition
1. 生物学家做实验发现脑皮层对简单的结构比如角.边有反应,而通过复杂的神经元传递,这些简单的结构最终帮助生物体有了更复杂的视觉系统.1970年David Marr提出的视觉处理流程遵循这样的原则,拿 ...
- CS231n笔记 Lecture 4 Introduction to Neural Networks
这一讲主要介绍了神经网络,基本内容之前如果学习过Andrew的Machine learning应该也都有所了解了.不过这次听完这一讲后还是有了新的一些认识. 计算图 Computational gra ...
- cs231n spring 2017 lecture10 Recurrent Neural Networks 听课笔记
(没太听明白,下次重新听一遍) 1. Recurrent Neural Networks
- cs231n spring 2017 lecture10 Recurrent Neural Networks
(没太听明白,下次重新听一遍) 1. Recurrent Neural Networks
- cs231n spring 2017 lecture12 Visualizing and Understanding 听课笔记
这一节课很零碎. 1. 神经网络到底在干嘛? 浅层的是具体的特征(比如边.角.色块等),高层的更抽象,最后的全连接层是把图片编码成一维向量然后和每一类标签作比较.如果直接把图片和标签做像素级的最近领域 ...
- cs231n spring 2017 lecture12 Visualizing and Understanding
这一节课很零碎. 1. 神经网络到底在干嘛? 浅层的是具体的特征(比如边.角.色块等),高层的更抽象,最后的全连接层是把图片编码成一维向量然后和每一类标签作比较.如果直接把图片和标签做像素级的最近领域 ...
- cs231n spring 2017 lecture7 Training Neural Networks II 听课笔记
1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...
随机推荐
- UML-重构
1.重构是什么? 重构是重写或重新构建已有代码的结构化和规律性方法,但不会改变已有代码的外在行为,而是采用一系列少量转换的步骤,并且每一步都结合了重新执行的测试.重构并不是全部推翻原有代码结构. 2. ...
- OpenMP笔记(四)
个人博客地址:http://www.bearoom.xyz/2019/02/22/openmp4/ 一.private private子句用于将一个或多个变量声明成线程私有的变量,这样每个线程都有该变 ...
- sklearn.metrics中的评估方法介绍(accuracy_score, recall_score, roc_curve, roc_auc_score, confusion_matrix)
1 accuracy_score:分类准确率分数是指所有分类正确的百分比.分类准确率这一衡量分类器的标准比较容易理解,但是它不能告诉你响应值的潜在分布,并且它也不能告诉你分类器犯错的类型.常常误导初学 ...
- javaweb学习——JDBC(五)
管理结果集 JDBC使用ResultSet来封装查询到的结果集,然后移动记录指针来取出结果集的内容,除此之外,JDBC还允许通过ResultSet来更新记录,并提供了ResultSetMetaData ...
- day59-mysql-存储过程、函数、事务、锁、备份
存储过程.函数不是重要的内容. 三. 存储过程:类似于函数(方法),简单的说存储过程是为了完成某个数据库中的特定功能而编写的语句集合, 该语句集包括SQL语句(对数据的增删改查).条件语句和循环语句等 ...
- Python—使用列表构造栈数据结构
class Stack(object): """ 使用列表实现栈 """ def __init__(self): self.stack = ...
- DOCKER 学习笔记2 认识dockerfile自定义镜像
Dockerfile 概念 Dockerfile 是一个文本文件,但包含所构建容器在运行时候的参数.库.资源配置.可以简单理解为我们现有的镜像,比如Centos/Nginx 但我们需要构建一个容器的时 ...
- SVN服务器的搭建(三)
接下来,试试用TortoiseSVN修改文件,添加文件,删除文件,以及如何解决冲突等. 添加文件 在检出的工作副本中添加一个Readme.txt文本文件,这时候这个文本文件会显示为没有版本控制的状态, ...
- urlopen error [errno 10060]的解决思路
当用多线程爬取某个网站的数据的时候,爬取一段时间后,总出现urlopen error [errno 10060]的错误,结果线程无端的被挂掉,一开始的解决思路是每次连接的时候换用不同的useragen ...
- 联想的amd电脑,Debian8.8开机后亮度值始终最大,尝试过各种方法,始终无法解决,最后debian8.8在安装开源驱动后,成功调节
安装ATI显卡驱动(开源)(方法步骤来自Debian WiKi) A.先升级可用的包 # aptitude upgrade B.安装下面3个包 # apt-get install firmware-l ...