【传送门:BZOJ3875


简要题意:

  给出n种怪物,每种怪物都带有三个值,S[i],K[i],R[i],分别表示对他使用普通攻击的花费,使用魔法攻击的花费,对他使用普通攻击后生成的其他怪物。

  每种怪物只能用法术攻击来消灭,用普通攻击只能将怪物变成其他怪物

  当前第一种怪物来了,请问将怪物完全消灭的最小花费


题解:

  首先一看就像DP,设f[i]为消灭第i种怪物的最小花费,可以列出方程:f[i]=min(K[i],∑f[j](将第i种怪物能生成的怪物消灭的最小花费总和))

  但是这种方法显然会出现环,那么我们就用近似SPFA的方法来解决这个问题

  首先将每种怪物放入队列,然后设d=s[x]+∑f[j],如果d<f[x]的话,就更新f[x]

  但是我们不但要更新f[x],还要更新能够生成第x种怪物的怪物,所以我们就要把这些怪物也放进队列里(如果这些怪物本身就在队列里的话,就不用)

  最后输出f[1]就可以了

  PS:要用STL容器来保存怪物生成怪物的信息(不然会爆空间),而且最好用queue来保存队列


参考代码:

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
typedef long long LL;
queue<int>q;
vector<int>c[];
vector<int>cd[];
bool v[];
LL f[],s[],k[];
int main()
{
int n;
scanf("%d",&n);
int head=,tail=;int r;
for(int i=;i<=n;i++)
{
scanf("%lld%lld",&s[i],&k[i]);
f[i]=k[i];
scanf("%d",&r);
q.push(i);v[i]=true;
while(r--)
{
int x;
scanf("%d",&x);
c[i].push_back(x);
cd[x].push_back(i);
}
}
while(q.empty()==)
{
int x=q.front();
LL d=s[x];
for(int i=;i<c[x].size();i++) d+=f[c[x][i]];
if(f[x]>d)
{
f[x]=d;
for(int i=;i<cd[x].size();i++)
{
if(v[cd[x][i]]==false)
{
v[cd[x][i]]=true;
q.push(cd[x][i]);
}
}
}
q.pop();
v[x]=false;
}
printf("%lld\n",f[]);
return ;
}

BZOJ3875: [Ahoi2014&Jsoi2014]骑士游戏的更多相关文章

  1. BZOJ3875 AHOI2014/JSOI2014骑士游戏(动态规划)

    容易想到设f[i]为杀死i号怪物所消耗的最小体力值,由后继节点更新.然而这显然是有后效性的,正常的dp没法做. 虽然spfa已经死了,但确实还是挺有意思的.只需要用spfa来更新dp值就可以了.dij ...

  2. 2019.01.22 bzoj3875: [Ahoi2014&Jsoi2014]骑士游戏(spfa+dp)

    传送门 题意简述:nnn个怪物,对于编号为iii的怪物可以选择用aia_iai​代价将其分裂成另外的bib_ibi​个怪物或者用cic_ici​代价直接消灭它,现在问消灭编号为1的怪物用的最小代价. ...

  3. 【BZOJ3875】[Ahoi2014&Jsoi2014]骑士游戏 SPFA优化DP

    [BZOJ3875][Ahoi2014&Jsoi2014]骑士游戏 Description  [故事背景] 长期的宅男生活中,JYY又挖掘出了一款RPG游戏.在这个游戏中JYY会扮演一个英勇的 ...

  4. p4042 [AHOI2014/JSOI2014]骑士游戏

    传送门 分析 我们发现对于一个怪物要不然用魔法代价使其无需考虑后续点要么用普通攻击使其转移到他所连的所有点上且所有边大于0 所以我们可以先将一个点的最优代价设为魔法攻击的代价 之后我们倒着跑spfa求 ...

  5. [BZOJ] 3875: [Ahoi2014&Jsoi2014]骑士游戏

    设\(f[x]\)为彻底杀死\(x\)号怪兽的代价 有转移方程 \[ f[x]=min\{k[x],s[x]+\sum f[v]\} \] 其中\(v\)是\(x\)通过普通攻击分裂出的小怪兽 这个东 ...

  6. bzoj 3875: [Ahoi2014&Jsoi2014]骑士游戏【dp+spfa】

    设f[i]为杀死i的最小代价,显然\( f[i]=min(k[i],s[i]+\sum f[to]) \) 但是这个东西有后效性,所以我们使用spfa来做,具体就是每更新一个f[i],就把能被它更新的 ...

  7. LUOGU P4042 [AHOI2014/JSOI2014]骑士游戏 (spfa+dp)

    传送门 解题思路 首先设\(f[x]\)表示消灭\(x\)的最小花费,那么转移方程就是 \(f[x]=min(f[x],\sum f[son[x]] +s[x])\),如果这个转移是一个有向无环图,那 ...

  8. [AHOI2014/JSOI2014]骑士游戏

    题目 思博贪心题写了一个半小时没救了,我也没看出这是一个\(spfa\)来啊 设\(dp_i\)表示彻底干掉第\(i\)只怪物的最小花费,一个非常显然的事情,就是对于\(k_i\)值最小的怪物满足\( ...

  9. 洛谷 P4042 [AHOI2014/JSOI2014]骑士游戏

    题意 有\(n\)个怪物,可以消耗\(k\)的代价消灭一个怪物或者消耗\(s\)的代价将它变成另外一个或多个新的怪物,求消灭怪物$的最小代价 思路 \(DP\)+最短路 这几天做的第一道自己能\(yy ...

随机推荐

  1. 实战medusa暴力破解

     medusa介绍: 暴力破解工具:主要可以破解这些模块功能很强大 medusa  的安装 条件: 准备工作:(下载下面软件)   1 wget http://www.foofus.net/jmk/t ...

  2. man 7 glob

    GLOB(7) Linux Programmer's Manual GLOB(7) NAME glob - 形成路径名称 描述 (DESCRIPTION) 很久以前 在 UNIX V6 版 中 有一个 ...

  3. swoole之memoryGlobal内存池分析

    内存池的作用: 直接使用系统调用malloc会有如下弊端: 频繁分配内存时会产生大量内存碎片 频繁分配内存增加系统调用开销 容易造成内存泄漏 内存池是预先申请一定数量的,大小相等的内存块作为预备使用: ...

  4. 题解 P3413 【SAC#1 - 萌数】

    这道题刚开始正向思维,然后处理重复的时候咕咕了. 参考了@巨型方块 大佬的题解后AC了,在这里就说几个我觉得比较重要或是容易被忽略的点,然后补充一些跳过的证明. 这道题的状态可以设为$dp[i][j] ...

  5. Android干货大放送:书籍、教程、工具各种全

    最全干货分享,本文收集整理了Android开发所需的书籍.教程.工具.资讯和周刊各种资源,它们能让你在Android开发之旅的各个阶段都受益. 入门 <Learning Android(中文版) ...

  6. Android里使用正則表達式

    在Android里怎样使用正則表達式: 以验证username为例.username一般字母开头,同意字母数字下划线.5-16个字节: String regEx = "^[a-zA-Z][a ...

  7. Android BlueDroid(二):BlueDroid蓝牙开启过程init

    关键词:bluedroid  initNative enableNative BTIF_TASK  BTU_TASKbt_hc_work_thread set_power  preload  GKI作 ...

  8. HDU 5344(MZL&#39;s xor-(ai+aj)的异或和)

    MZL's xor Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total ...

  9. tp5实现多数据库查询

    引言: 有时候一个管理后台,需要涉及到多个数据库.比如,商城管理.直播管理.消息管理等等,它们都有自己的数据库.这个时候,就需要去连接多个数据库,进行处理了.thinkphp可以支持多个数据库连接. ...

  10. dig linux下的使用

    一般来说linux下查询域名解析有两种选择,nslookup或者dig,而在使用上我觉得dig更加方便顺手. 如果是在debian下的话,只要装上dnsutils这个包就可以使用dig命令了. 最基本 ...