我使用的是opencv2.4.9。安装后。我的cvboost..cpp文件的路径是........\opencv\sources\apps\haartraining\cvhaartraining.cpp,研究源代码那么多天,有非常多收获。opencv库真是非常强大。当中在这篇博文中我有部分凝视,其它的有关知识请參考我博客http://blog.csdn.net/ding977921830?viewmode=contents。详细内容例如以下:

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/ /*
* cvhaartraining.cpp
*
* training of cascade of boosted classifiers based on haar features
*參考资料:
*1 http://www.sjsjw.com/kf_www/article/000119ABA007840.asp
*2 http://www.opencvchina.com/thread-129-1-1.html
*/ #include "cvhaartraining.h"
#include "_cvhaartraining.h" #include <cstdio>
#include <cstdlib>
#include <cmath>
#include <climits>
#include <ctype.h> #include "highgui.h" #ifdef CV_VERBOSE
#include <ctime> #ifdef _WIN32
/* use clock() function insted of time() */
#define TIME( arg ) (((double) clock()) / CLOCKS_PER_SEC)
#else
#define TIME( arg ) (time( arg ))
#endif /* _WIN32 */ #endif /* CV_VERBOSE */ #if defined CV_OPENMP && (defined _MSC_VER || defined CV_ICC)
#define CV_OPENMP 1
#else
#undef CV_OPENMP
#endif typedef struct CvBackgroundData
{
int count;
char** filename;
int last;
int round;
CvSize winsize;
} CvBackgroundData; typedef struct CvBackgroundReader
{
CvMat src;
CvMat img;
CvPoint offset;
float scale;
float scalefactor;
float stepfactor;
CvPoint point;
} CvBackgroundReader; /*
* Background reader
* Created in each thread
*/
CvBackgroundReader* cvbgreader = NULL; #if defined CV_OPENMP
#pragma omp threadprivate(cvbgreader)
#endif CvBackgroundData* cvbgdata = NULL; /*
* get sum image offsets for <rect> corner points
* step - row step (measured in image pixels!) of sum image
*/
//CV_SUM_OFFSETS( p0, p1, p2, p3, rect, step )表示一个矩形的四个顶点,当中,以左上角的点为參考点
#define CV_SUM_OFFSETS( p0, p1, p2, p3, rect, step ) \
/* (x, y) */ \
(p0) = (rect).x + (step) * (rect).y; \
/* (x + w, y) */ \
(p1) = (rect).x + (rect).width + (step) * (rect).y; \
/* (x + w, y) */ \
(p2) = (rect).x + (step) * ((rect).y + (rect).height); \
/* (x + w, y + h) */ \
(p3) = (rect).x + (rect).width + (step) * ((rect).y + (rect).height); /*
* get tilted image offsets for <rect> corner points
* step - row step (measured in image pixels!) of tilted image
*/
//CV_TILTED_OFFSETS( p0, p1, p2, p3, rect, step ) 表示一个旋转45度矩形的四个顶点,当中以最上面那个点为參考点(x,y)
#define CV_TILTED_OFFSETS( p0, p1, p2, p3, rect, step ) \
/* (x, y) */ \
(p0) = (rect).x + (step) * (rect).y; \
/* (x - h, y + h) */ \
(p1) = (rect).x - (rect).height + (step) * ((rect).y + (rect).height);\
/* (x + w, y + w) */ \
(p2) = (rect).x + (rect).width + (step) * ((rect).y + (rect).width); \
/* (x + w - h, y + w + h) */ \
(p3) = (rect).x + (rect).width - (rect).height \
+ (step) * ((rect).y + (rect).width + (rect).height); /*
* icvCreateIntHaarFeatures
*
* Create internal representation of haar features
*
* mode:
* 0 - BASIC = Viola
* 1 - CORE = All upright
* 2 - ALL = All features
*/
//功能:针对大小为winsize的图像,计算全部的HaarFeature的rect,并存入features 返回输入
static
CvIntHaarFeatures* icvCreateIntHaarFeatures( CvSize winsize,
int mode,
/*
mode=0,仅仅计算例如以下6种特征haar_x2,haar_y2,haar_x3,haar_y3,haar_y4,haar_x2_y2
mode=1,仅仅计算例如以下8种特征haar_x2,haar_y2,haar_x3,haar_y3,haar_x4,haar_y4,haar_point
mode=2,计算所以特征,例如以下:haar_x2,haar_y2,haar_x3,haar_y3,haar_x4,haar_y4,haar_point,tilted_haar_x2。tilted_haar_y2,
tilted_haar_x3,tilted_haar_y3。tilted_haar_x4。tilted_haar_y4。*/
int symmetric )/*表示目标图形是否为垂直对称.Symmetric 为 1
表示仅仅创建 Haar 特征的中心在左半部分的全部特征,为 0 时创建全部特征。 当训练人脸图像时,由于人脸的左右对称性能够设置 Symmetric 为 1,以加速训练。 */
{
CvIntHaarFeatures* features = NULL;//存储全部Haar特征的结构体,Haar特征由指针CvTHaarFeature所指向。
CvTHaarFeature haarFeature; //一个Haar特征由2到3个具有对应权重的矩形组成。
//这几个矩形的权重符号相反,而且权重的绝对值跟矩形的大小成反比。
/*内存存储器是一个可用来存储诸如序列,轮廓,图形,子划分等动态增长数据结构的底层结构。
它是由一系列以同等大小的内存块构成,呈列表型,本句选自https://code.csdn.net/snippets/632568/master/.cpp/raw*/
CvMemStorage* storage = NULL;
CvSeq* seq = NULL;
CvSeqWriter writer; int s0 = 36; /* minimum total area size of basic haar feature */
int s1 = 12; /* minimum total area size of tilted haar features 2 */
int s2 = 18; /* minimum total area size of tilted haar features 3 */
int s3 = 24; /* minimum total area size of tilted haar features 4 */ int x = 0;
int y = 0; //(x,y)表示小矩形的位置
int dx = 0; //dx表示小矩形的宽
int dy = 0; //dy表示小矩形的高
///////////////////////////////////////////////////////////////////////////////
//计算缩放因子factor
//winsize是训练样本的大小
#if 0
float factor = 1.0F; factor = ((float) winsize.width) * winsize.height / (24 * 24); s0 = (int) (s0 * factor);
s1 = (int) (s1 * factor);
s2 = (int) (s2 * factor);
s3 = (int) (s3 * factor);
#else
s0 = 1;
s1 = 1;
s2 = 1;
s3 = 1;
#endif /* CV_VECTOR_CREATE( vec, CvIntHaarFeature, size, maxsize ) */
storage = cvCreateMemStorage();
//功能:创建新序列。并初始化写入部分
cvStartWriteSeq( 0, sizeof( CvSeq ), sizeof( haarFeature ), storage, &writer );
for( x = 0; x < winsize.width; x++ )
{
for( y = 0; y < winsize.height; y++ )
{
for( dx = 1; dx <= winsize.width; dx++ )
{
for( dy = 1; dy <= winsize.height; dy++ )
{
// haar_x2
if ( (x+dx*2 <= winsize.width) && (y+dy <= winsize.height) ) {
if (dx*2*dy < s0) continue;///???????? ?? ? ???? ???? ?? if (!symmetric || (x+x+dx*2 <=winsize.width)) {//??? ???? ?? ? ? ?? haarFeature = cvHaarFeature( "haar_x2",//类型
x, y, dx*2, dy, -1, //[x,y,dx*2,dy]是一个小矩形左上角的位置和高和宽,-1是其权重
x+dx, y, dx , dy, +2 ); //[x,y,dx*2,dy]是一个小矩形左上角的位置和高和宽,2是其权重
//第一个小矩形中的像素和乘以-1。然后加上第二个小矩形的像素和乘以2,也就是水平方向上两个等宽的小矩形。用右边的减去左边的.黑色为+,白色为-
/* CV_VECTOR_PUSH( vec, CvIntHaarFeature, haarFeature, size, maxsize, step ) */
CV_WRITE_SEQ_ELEM( haarFeature, writer );
}
} // haar_y2
if ( (x+dx <= winsize.width) && (y+dy*2 <= winsize.height) ) {
if (dx*2*dy < s0) continue;
if (!symmetric || (x+x+dx <= winsize.width)) {
haarFeature = cvHaarFeature( "haar_y2",
x, y, dx, dy*2, -1,
x, y+dy, dx, dy, +2 );
CV_WRITE_SEQ_ELEM( haarFeature, writer );
}
} // haar_x3
if ( (x+dx*3 <= winsize.width) && (y+dy <= winsize.height) ) {
if (dx*3*dy < s0) continue;
if (!symmetric || (x+x+dx*3 <=winsize.width)) {
haarFeature = cvHaarFeature( "haar_x3",
x, y, dx*3, dy, -1,
x+dx, y, dx, dy, +3 );
CV_WRITE_SEQ_ELEM( haarFeature, writer );
}
} // haar_y3
if ( (x+dx <= winsize.width) && (y+dy*3 <= winsize.height) ) {
if (dx*3*dy < s0) continue;
if (!symmetric || (x+x+dx <= winsize.width)) {
haarFeature = cvHaarFeature( "haar_y3",
x, y, dx, dy*3, -1,
x, y+dy, dx, dy, +3 );
CV_WRITE_SEQ_ELEM( haarFeature, writer );
}
} if( mode != 0 /*BASIC*/ ) {
// haar_x4
if ( (x+dx*4 <= winsize.width) && (y+dy <= winsize.height) ) {
if (dx*4*dy < s0) continue;
if (!symmetric || (x+x+dx*4 <=winsize.width)) {
haarFeature = cvHaarFeature( "haar_x4",
x, y, dx*4, dy, -1,
x+dx, y, dx*2, dy, +2 );
CV_WRITE_SEQ_ELEM( haarFeature, writer );
}
} // haar_y4
if ( (x+dx <= winsize.width ) && (y+dy*4 <= winsize.height) ) {
if (dx*4*dy < s0) continue;
if (!symmetric || (x+x+dx <=winsize.width)) {
haarFeature = cvHaarFeature( "haar_y4",
x, y, dx, dy*4, -1,
x, y+dy, dx, dy*2, +2 );
CV_WRITE_SEQ_ELEM( haarFeature, writer );
}
}
} // x2_y2
if ( (x+dx*2 <= winsize.width) && (y+dy*2 <= winsize.height) ) {
if (dx*4*dy < s0) continue;
if (!symmetric || (x+x+dx*2 <=winsize.width)) {
haarFeature = cvHaarFeature( "haar_x2_y2",
x , y, dx*2, dy*2, -1,
x , y , dx , dy, +2,
x+dx, y+dy, dx , dy, +2 );
CV_WRITE_SEQ_ELEM( haarFeature, writer );
}
} if (mode != 0 /*BASIC*/) {
// point
if ( (x+dx*3 <= winsize.width) && (y+dy*3 <= winsize.height) ) {
if (dx*9*dy < s0) continue;
if (!symmetric || (x+x+dx*3 <=winsize.width)) {
haarFeature = cvHaarFeature( "haar_point",//"haar_point"为3*3的小矩形
x , y, dx*3, dy*3, -1,
x+dx, y+dy, dx , dy , +9);
CV_WRITE_SEQ_ELEM( haarFeature, writer );
}
}
} if (mode == 2 /*ALL*/) {
// tilted haar_x2 (x, y, w, h, b, weight)
if ( (x+2*dx <= winsize.width) && (y+2*dx+dy <= winsize.height) && (x-dy>= 0) ) {
if (dx*2*dy < s1) continue; if (!symmetric || (x <= (winsize.width / 2) )) {
haarFeature = cvHaarFeature( "tilted_haar_x2",///???????? ???? ? ??? ?? ?????? ? ? ?? ??
x, y, dx*2, dy, -1,
x, y, dx , dy, +2 );
CV_WRITE_SEQ_ELEM( haarFeature, writer );
}
} // tilted haar_y2 (x, y, w, h, b, weight)
if ( (x+dx <= winsize.width) && (y+dx+2*dy <= winsize.height) && (x-2*dy>= 0) ) {
if (dx*2*dy < s1) continue; if (!symmetric || (x <= (winsize.width / 2) )) {
haarFeature = cvHaarFeature( "tilted_haar_y2",
x, y, dx, 2*dy, -1,
x, y, dx, dy, +2 );
CV_WRITE_SEQ_ELEM( haarFeature, writer );
}
} // tilted haar_x3 (x, y, w, h, b, weight)
if ( (x+3*dx <= winsize.width) && (y+3*dx+dy <= winsize.height) && (x-dy>= 0) ) {
if (dx*3*dy < s2) continue; if (!symmetric || (x <= (winsize.width / 2) )) {
haarFeature = cvHaarFeature( "tilted_haar_x3",//////? ?????????????????? ? ? ?? ??
x, y, dx*3, dy, -1,
x+dx, y+dx, dx , dy, +3 );
CV_WRITE_SEQ_ELEM( haarFeature, writer );
}
} // tilted haar_y3 (x, y, w, h, b, weight)
if ( (x+dx <= winsize.width) && (y+dx+3*dy <= winsize.height) && (x-3*dy>= 0) ) {
if (dx*3*dy < s2) continue; if (!symmetric || (x <= (winsize.width / 2) )) {
haarFeature = cvHaarFeature( "tilted_haar_y3",//? ? ????????? ??? ????????? ?
x, y, dx, 3*dy, -1,
x-dy, y+dy, dx, dy, +3 );
CV_WRITE_SEQ_ELEM( haarFeature, writer );
}
} // tilted haar_x4 (x, y, w, h, b, weight)
if ( (x+4*dx <= winsize.width) && (y+4*dx+dy <= winsize.height) && (x-dy>= 0) ) {
if (dx*4*dy < s3) continue; if (!symmetric || (x <= (winsize.width / 2) )) {
haarFeature = cvHaarFeature( "tilted_haar_x4",//??????? ?? ??? ??? ??????? x, y, dx*4, dy, -1,
x+dx, y+dx, dx*2, dy, +2 );
CV_WRITE_SEQ_ELEM( haarFeature, writer );
}
} // tilted haar_y4 (x, y, w, h, b, weight)
if ( (x+dx <= winsize.width) && (y+dx+4*dy <= winsize.height) && (x-4*dy>= 0) ) {
if (dx*4*dy < s3) continue; if (!symmetric || (x <= (winsize.width / 2) )) {
haarFeature = cvHaarFeature( "tilted_haar_y4",//??????? ??? ? ?? ???
x, y, dx, 4*dy, -1,
x-dy, y+dy, dx, 2*dy, +2 );
CV_WRITE_SEQ_ELEM( haarFeature, writer );
}
} /* // tilted point
if ( (x+dx*3 <= winsize.width - 1) && (y+dy*3 <= winsize.height - 1) && (x-3*dy>= 0)) {
if (dx*9*dy < 36) continue;
if (!symmetric || (x <= (winsize.width / 2) )) {
haarFeature = cvHaarFeature( "tilted_haar_point",
x, y, dx*3, dy*3, -1,
x, y+dy, dx , dy, +9 );
CV_WRITE_SEQ_ELEM( haarFeature, writer );
}
}
*/
}
}
}
}
} seq = cvEndWriteSeq( &writer );//函数cvEndWriteSeq完毕写入操作并返回指向被写入元素的序列的地址,
//同一时候,函数将截取最后那个不完整的序列块.块的剩余部分返回到内存之后,序列即能够被安全地读和写.
features = (CvIntHaarFeatures*) cvAlloc( sizeof( CvIntHaarFeatures ) +
( sizeof( CvTHaarFeature ) + sizeof( CvFastHaarFeature ) ) * seq->total );
//opencv中全部的内存分配和释放都是通过cvAlloc和cvFree合作完毕的.
//假设cvAlloc/cvFree不是匹配出现, 那么能够觉得出现了内存泄漏.
features->feature = (CvTHaarFeature*) (features + 1);
features->fastfeature = (CvFastHaarFeature*) ( features->feature + seq->total );
features->count = seq->total;
features->winsize = winsize;
//复制序列的全部或部分到一个连续内存数组中。
cvCvtSeqToArray( seq, (CvArr*) features->feature );
cvReleaseMemStorage( &storage );
//将普通的特征转化为高速计算的haar特征
icvConvertToFastHaarFeature( features->feature, features->fastfeature,
features->count, (winsize.width + 1) ); return features;
} static
void icvReleaseIntHaarFeatures( CvIntHaarFeatures** intHaarFeatures )
{
if( intHaarFeatures != NULL && (*intHaarFeatures) != NULL )//?? ???????????????
{
cvFree( intHaarFeatures );
(*intHaarFeatures) = NULL;
}
} /*
*icvConvertToFastHaarFeature函数的定义
*/
void icvConvertToFastHaarFeature( CvTHaarFeature* haarFeature,
//输入数组
CvFastHaarFeature* fastHaarFeature,
//输出数组
int size, int step )
//size表示数组的大小。step表示积分图的row step,一步能够是8位。比方灰度图;一步也能够是24位。比方RGB图
{
int i = 0;//表示特征的个数
int j = 0;//表示一个特征里小矩形的个数 for( i = 0; i < size; i++ )
{
fastHaarFeature[i].tilted = haarFeature[i].tilted;
if( !fastHaarFeature[i].tilted )//当为直立特征
{
for( j = 0; j < CV_HAAR_FEATURE_MAX; j++ )
{
fastHaarFeature[i].rect[j].weight = haarFeature[i].rect[j].weight;
//假设没有该矩形特征,或者已经计算结束,则跳出循环
if( fastHaarFeature[i].rect[j].weight == 0.0F )
{
break;
}
//对于垂直的haar特征,利用上述定义的宏把普通的haar特征转化为能高速计算的haar特征
CV_SUM_OFFSETS( fastHaarFeature[i].rect[j].p0,
fastHaarFeature[i].rect[j].p1,
fastHaarFeature[i].rect[j].p2,
fastHaarFeature[i].rect[j].p3,
haarFeature[i].rect[j].r, step )
} }
else //当为旋转特征时
{
for( j = 0; j < CV_HAAR_FEATURE_MAX; j++ )
{
fastHaarFeature[i].rect[j].weight = haarFeature[i].rect[j].weight;
if( fastHaarFeature[i].rect[j].weight == 0.0F )
{
break;
}
////对于旋转的haar特征,利用上述定义的宏把普通的haar特征转化为能高速计算的haar特征
CV_TILTED_OFFSETS( fastHaarFeature[i].rect[j].p0,
fastHaarFeature[i].rect[j].p1,
fastHaarFeature[i].rect[j].p2,
fastHaarFeature[i].rect[j].p3,
haarFeature[i].rect[j].r, step )
}
}
}
} /*
* icvCreateHaarTrainingData
*
* Create haar training data used in stage training
功能:为训练分类器分配所需内存。而且返回内存地址
输入:
Winsize:样本图像大小
Maxnumsamples:样本总数。Maxnumsamples=正样本总是+负样本总数。
输出:CvHaarTrainigData*data,data指向分配的内存首地址。
伪代码:
为data的各个成员分配内存。
Return data;http://www.opencvchina.com/thread-191-1-1.html
*/
static
CvHaarTrainigData* icvCreateHaarTrainingData( CvSize winsize, int maxnumsamples )
{
CvHaarTrainigData* data;
/* #define CV_FUNCNAME( Name ) /
static char cvFuncName[] = Name
CV_FUNCNAME 定义变量 cvFuncName存放函数名,用于出错时能够报告出错的函数
*/
CV_FUNCNAME( "icvCreateHaarTrainingData" );
/*
__BEGIN__ 和__END__配套使用,当出现error时,EXIT cxerror.h 中
#define __BEGIN__ {
#define __END__ goto exit; exit: ; }
对于代码中 __BEGIN__ 和__END__后面多加一个分号 的解释:
由于 __BEGIN__;等价于{; ,当中分号(;)为一个空语句,是合理的,但不要也行.__END__也一样.
*/
__BEGIN__; data = NULL;
uchar* ptr = NULL;
size_t datasize = 0;//size_t的全称应该是size type,就是说“一种用来记录大小的数据类型”。 //由于size_t类型的数据事实上是保存了一个整数,所以它也能够做加减乘除,也能够转化为int并赋值给int类型的变量。 datasize = sizeof( CvHaarTrainigData ) +
/* sum and tilted */
( 2 * (winsize.width + 1) * (winsize.height + 1) * sizeof( sum_type ) +
sizeof( float ) + /* normfactor */
sizeof( float ) + /* cls */
sizeof( float ) /* weight */
) * maxnumsamples; CV_CALL( data = (CvHaarTrainigData*) cvAlloc( datasize ) );//?????? ??? ??? ? ??
/*
*void *memset(void *s, int ch, size_t n);
*函数解释:将s中前n个字节 (typedef unsigned int size_t )用 ch 替换并返回 s 。
*memset:作用是在一段内存块中填充某个给定的值,它是对较大的结构体或数组进行清零操作的一种最快方法[1] 。
*/
memset( (void*)data, 0, datasize );
data->maxnum = maxnumsamples;
data->winsize = winsize;
ptr = (uchar*)(data + 1);
data->sum = cvMat( maxnumsamples, (winsize.width + 1) * (winsize.height + 1),
CV_SUM_MAT_TYPE, (void*) ptr );
ptr += sizeof( sum_type ) * maxnumsamples * (winsize.width+1) * (winsize.height+1);
data->tilted = cvMat( maxnumsamples, (winsize.width + 1) * (winsize.height + 1),
CV_SUM_MAT_TYPE, (void*) ptr );
ptr += sizeof( sum_type ) * maxnumsamples * (winsize.width+1) * (winsize.height+1);
data->normfactor = cvMat( 1, maxnumsamples, CV_32FC1, (void*) ptr );
ptr += sizeof( float ) * maxnumsamples;
data->cls = cvMat( 1, maxnumsamples, CV_32FC1, (void*) ptr );
ptr += sizeof( float ) * maxnumsamples;
data->weights = cvMat( 1, maxnumsamples, CV_32FC1, (void*) ptr ); data->valcache = NULL;
data->idxcache = NULL; __END__; return data;
}
/*
*icvReleaseHaarTrainingDataCache的作用
*释放训练样本数据缓存,包括样本特征的缓存,以及排序后的样本特征的缓存
*/
static
void icvReleaseHaarTrainingDataCache( CvHaarTrainigData** haarTrainingData )
{
if( haarTrainingData != NULL && (*haarTrainingData) != NULL )
{
//CvMat* valcache; 样本的特征,一共同拥有maxnum行 。特征总数(CvIntHaarFeatures.count)个列
if( (*haarTrainingData)->valcache != NULL )
{
cvReleaseMat( &(*haarTrainingData)->valcache );
(*haarTrainingData)->valcache = NULL;
}
// CvMat* idxcache对样本标号按特征值升序排序。一共同拥有特征总数(CvIntHaarFeatures.count)个行,maxnum 个列
if( (*haarTrainingData)->idxcache != NULL )
{
cvReleaseMat( &(*haarTrainingData)->idxcache );
(*haarTrainingData)->idxcache = NULL;
}
}
}
/*
*icvReleaseHaarTrainingData的作用
*释放训练样本数据缓存
*/
static
void icvReleaseHaarTrainingData( CvHaarTrainigData** haarTrainingData )
{
if( haarTrainingData != NULL && (*haarTrainingData) != NULL )
{
icvReleaseHaarTrainingDataCache( haarTrainingData ); cvFree( haarTrainingData );
}
} /*
*函数icvGetTrainingDataCallback介绍
*功能:对全部样本计算特征编号从first開始的num个特征,并保存到mat里。 *输入:
*CvMat* mat矩阵样本总数个行,num个列。保存每一个样本的num个特征值。 *First:特征类型编号的開始处
*Num:要计算的特征类型个数。
*Userdata:积分矩阵和权重、特征模板等信息。 *输出:
*CvMat* mat矩阵样本总数个行。num个列。 保存每一个样本的num个特征值。
*/
static
void icvGetTrainingDataCallback( CvMat* mat, CvMat* sampleIdx, CvMat*,
int first, int num, void* userdata )
{
int i = 0;
int j = 0;
float val = 0.0F;
float normfactor = 0.0F; CvHaarTrainingData* training_data;
CvIntHaarFeatures* haar_features; #ifdef CV_COL_ARRANGEMENT
assert( mat->rows >= num );
#else
assert( mat->cols >= num );
#endif
//userdata = cvUserdata( data, haarFeatures )
//userdata包括了參与训练的积分图和特征,其指针应该是用于回调的用户參数
training_data = ((CvUserdata*) userdata)->trainingData;
haar_features = ((CvUserdata*) userdata)->haarFeatures;
if( sampleIdx == NULL )
{
int num_samples; #ifdef CV_COL_ARRANGEMENT
num_samples = mat->cols;
#else
num_samples = mat->rows;
#endif
for( i = 0; i < num_samples; i++ )//样本数量
{
for( j = 0; j < num; j++ )//每一个样本的第j个特征
{ //计算一个样本(积分图为sum和tilted)的一个HaarFeature。并返回该值
val = cvEvalFastHaarFeature(
( haar_features->fastfeature
+ first + j ),
(sum_type*) (training_data->sum.data.ptr
+ i * training_data->sum.step),
(sum_type*) (training_data->tilted.data.ptr
+ i * training_data->tilted.step) );
normfactor = training_data->normfactor.data.fl[i];
val = ( normfactor == 0.0F ) ? 0.0F : (val / normfactor); #ifdef CV_COL_ARRANGEMENT
CV_MAT_ELEM( *mat, float, j, i ) = val;
#else
CV_MAT_ELEM( *mat, float, i, j ) = val;
#endif
}
}
}
else
{
uchar* idxdata = NULL;
size_t step = 0;
int numidx = 0;
int idx = 0; assert( CV_MAT_TYPE( sampleIdx->type ) == CV_32FC1 ); idxdata = sampleIdx->data.ptr;
if( sampleIdx->rows == 1 )
{
step = sizeof( float );
numidx = sampleIdx->cols;
}
else
{
step = sampleIdx->step;
numidx = sampleIdx->rows;
} for( i = 0; i < numidx; i++ )
{
for( j = 0; j < num; j++ )
{
idx = (int)( *((float*) (idxdata + i * step)) );
val = cvEvalFastHaarFeature(
( haar_features->fastfeature
+ first + j ),
(sum_type*) (training_data->sum.data.ptr
+ idx * training_data->sum.step),
(sum_type*) (training_data->tilted.data.ptr
+ idx * training_data->tilted.step) );
normfactor = training_data->normfactor.data.fl[idx];
val = ( normfactor == 0.0F ) ? 0.0F : (val / normfactor); #ifdef CV_COL_ARRANGEMENT
CV_MAT_ELEM( *mat, float, j, idx ) = val;
#else
CV_MAT_ELEM( *mat, float, idx, j ) = val;
#endif }
}
}
#if 0 /*def CV_VERBOSE*/
if( first % 5000 == 0 )
{
fprintf( stderr, "%3d%%\r", (int) (100.0 * first /
haar_features->count) );
fflush( stderr );
}
#endif /* CV_VERBOSE */
} static
void icvPrecalculate( CvHaarTrainingData* data, CvIntHaarFeatures* haarFeatures,
int numprecalculated )
{
CV_FUNCNAME( "icvPrecalculate" ); __BEGIN__; icvReleaseHaarTrainingDataCache( &data ); numprecalculated -= numprecalculated % CV_STUMP_TRAIN_PORTION;
numprecalculated = MIN( numprecalculated, haarFeatures->count ); if( numprecalculated > 0 )
{
//size_t datasize;
int m;
CvUserdata userdata; /* private variables */
#ifdef CV_OPENMP
CvMat t_data;
CvMat t_idx;
int first;
int t_portion;
int portion = CV_STUMP_TRAIN_PORTION;
#endif /* CV_OPENMP */ m = data->sum.rows; #ifdef CV_COL_ARRANGEMENT
CV_CALL( data->valcache = cvCreateMat( numprecalculated, m, CV_32FC1 ) );
#else
CV_CALL( data->valcache = cvCreateMat( m, numprecalculated, CV_32FC1 ) );
#endif
CV_CALL( data->idxcache = cvCreateMat( numprecalculated, m, CV_IDX_MAT_TYPE ) ); userdata = cvUserdata( data, haarFeatures ); #ifdef CV_OPENMP
#pragma omp parallel for private(t_data, t_idx, first, t_portion)
for( first = 0; first < numprecalculated; first += portion )
{
t_data = *data->valcache;
t_idx = *data->idxcache;
t_portion = MIN( portion, (numprecalculated - first) ); /* indices */
t_idx.rows = t_portion;
t_idx.data.ptr = data->idxcache->data.ptr + first * ((size_t)t_idx.step); /* feature values */
#ifdef CV_COL_ARRANGEMENT
t_data.rows = t_portion;
t_data.data.ptr = data->valcache->data.ptr +
first * ((size_t) t_data.step );
#else
t_data.cols = t_portion;
t_data.data.ptr = data->valcache->data.ptr +
first * ((size_t) CV_ELEM_SIZE( t_data.type ));
#endif
icvGetTrainingDataCallback( &t_data, NULL, NULL, first, t_portion,
&userdata );
#ifdef CV_COL_ARRANGEMENT
cvGetSortedIndices( &t_data, &t_idx, 0 );
#else
cvGetSortedIndices( &t_data, &t_idx, 1 );
#endif #ifdef CV_VERBOSE
putc( '.', stderr );
fflush( stderr );
#endif /* CV_VERBOSE */ } #ifdef CV_VERBOSE
fprintf( stderr, "\n" );
fflush( stderr );
#endif /* CV_VERBOSE */ #else
icvGetTrainingDataCallback( data->valcache, NULL, NULL, 0, numprecalculated,
&userdata );
#ifdef CV_COL_ARRANGEMENT
cvGetSortedIndices( data->valcache, data->idxcache, 0 );
#else
cvGetSortedIndices( data->valcache, data->idxcache, 1 );
#endif
#endif /* CV_OPENMP */
} __END__;
} static
void icvSplitIndicesCallback( int compidx, float threshold,
CvMat* idx, CvMat** left, CvMat** right,
void* userdata )
{
CvHaarTrainingData* data;
CvIntHaarFeatures* haar_features;
int i;
int m;
CvFastHaarFeature* fastfeature; data = ((CvUserdata*) userdata)->trainingData;
haar_features = ((CvUserdata*) userdata)->haarFeatures;
fastfeature = &haar_features->fastfeature[compidx]; m = data->sum.rows;
*left = cvCreateMat( 1, m, CV_32FC1 );
*right = cvCreateMat( 1, m, CV_32FC1 );
(*left)->cols = (*right)->cols = 0;
if( idx == NULL )
{
for( i = 0; i < m; i++ )
{
if( cvEvalFastHaarFeature( fastfeature,
(sum_type*) (data->sum.data.ptr + i * data->sum.step),
(sum_type*) (data->tilted.data.ptr + i * data->tilted.step) )
< threshold * data->normfactor.data.fl[i] )
{
(*left)->data.fl[(*left)->cols++] = (float) i;
}
else
{
(*right)->data.fl[(*right)->cols++] = (float) i;
}
}
}
else
{
uchar* idxdata;
int idxnum;
size_t idxstep;
int index; idxdata = idx->data.ptr;
idxnum = (idx->rows == 1) ? idx->cols : idx->rows;
idxstep = (idx->rows == 1) ? CV_ELEM_SIZE( idx->type ) : idx->step;
for( i = 0; i < idxnum; i++ )
{
index = (int) *((float*) (idxdata + i * idxstep));
if( cvEvalFastHaarFeature( fastfeature,
(sum_type*) (data->sum.data.ptr + index * data->sum.step),
(sum_type*) (data->tilted.data.ptr + index * data->tilted.step) )
< threshold * data->normfactor.data.fl[index] )
{
(*left)->data.fl[(*left)->cols++] = (float) index;
}
else
{
(*right)->data.fl[(*right)->cols++] = (float) index;
}
}
}
} /*
* icvCreateCARTStageClassifier
*
* Create stage classifier with trees as weak classifiers
* data - haar training data. It must be created and filled before call
* minhitrate - desired min hit rate
* maxfalsealarm - desired max false alarm rate
* symmetric - if not 0 it is assumed that samples are vertically symmetric
* numprecalculated - number of features that will be precalculated. Each precalculated
* feature need (number_of_samples*(sizeof( float ) + sizeof( short ))) bytes of memory
* weightfraction - weight trimming parameter
* numsplits - number of binary splits in each tree
* boosttype - type of applied boosting algorithm
* stumperror - type of used error if Discrete AdaBoost algorithm is applied
* maxsplits - maximum total number of splits in all weak classifiers.
* If it is not 0 then NULL returned if total number of splits exceeds <maxsplits>.
*/
static
//icvCreateCARTStageClassifier部分内容选自http://www.sjsjw.com/kf_www/article/000119ABA007840.asp
CvIntHaarClassifier* icvCreateCARTStageClassifier( CvHaarTrainingData* data, // 全部训练样本
CvMat* sampleIdx, // 实际训练样本序列
CvIntHaarFeatures* haarFeatures, // 全部HAAR特征
float minhitrate, // 最小正检率(用于确定强分类器阈值)
float maxfalsealarm, // 最大误检率(用于确定是否收敛)
int symmetric, // HAAR是否对称
float weightfraction, // 样本剔除比例(用于剔除小权值样本)
int numsplits, // 每一个弱分类器特征个数(一般为1)
CvBoostType boosttype, // adaboost类型
CvStumpError stumperror, // Discrete AdaBoost中的阈值计算方式
int maxsplits ) // 弱分类器最大个数{ #ifdef CV_COL_ARRANGEMENT
int flags = CV_COL_SAMPLE;
#else
int flags = CV_ROW_SAMPLE;
#endif CvStageHaarClassifier* stage = NULL; // 强分类器
CvBoostTrainer* trainer; // 暂时训练器。用于更新样本权值
CvCARTClassifier* cart = NULL; // 弱分类器
CvCARTTrainParams trainParams; // 训练參数
CvMTStumpTrainParams stumpTrainParams; // 弱分类器參数
//CvMat* trainData = NULL;
//CvMat* sortedIdx = NULL;
CvMat eval; // 暂时矩阵
int n = 0; // 特征总数
int m = 0; // 总样本个数
int numpos = 0; // 正样本个数
int numneg = 0; // 负样本个数
int numfalse = 0; // 误检样本个数
float sum_stage = 0.0F; // 置信度累积和
float threshold = 0.0F; // 强分类器阈值
float falsealarm = 0.0F; // 误检率 //CvMat* sampleIdx = NULL;
CvMat* trimmedIdx; // 剔除小权值之后的样本序列
//float* idxdata = NULL;
//float* tempweights = NULL;
//int idxcount = 0;
CvUserdata userdata; // 训练数据 int i = 0;
int j = 0;
int idx;
int numsamples; // 实际样本个数
int numtrimmed; // 剔除小权值之后的样本个数 CvCARTHaarClassifier* classifier; // 弱分类器
CvSeq* seq = NULL;
CvMemStorage* storage = NULL;
CvMat* weakTrainVals; // 样本类别。仅仅有logitboost才会用到
float alpha;
float sumalpha;
int num_splits; // 弱分类器个数 #ifdef CV_VERBOSE
printf( "+----+----+-+---------+---------+---------+---------+\n" );
printf( "| N |%%SMP|F| ST.THR | HR | FA | EXP. ERR|\n" );
printf( "+----+----+-+---------+---------+---------+---------+\n" );
#endif /* CV_VERBOSE */ n = haarFeatures->count;//这是haar特征的数目,20*20的数目是78460,24*24的是162336,30*30的是394725.
m = data->sum.rows;
numsamples = (sampleIdx) ? MAX( sampleIdx->rows, sampleIdx->cols ) : m; userdata = cvUserdata( data, haarFeatures ); /* 弱分类參数设置 */
stumpTrainParams.type = ( boosttype == CV_DABCLASS )
? CV_CLASSIFICATION_CLASS : CV_REGRESSION; // 分类或者回归
stumpTrainParams.error = ( boosttype == CV_LBCLASS || boosttype == CV_GABCLASS )
? CV_SQUARE : stumperror;
stumpTrainParams.portion = CV_STUMP_TRAIN_PORTION; // 每组特征个数
stumpTrainParams.getTrainData = icvGetTrainingDataCallback; // 计算样本的haar值
stumpTrainParams.numcomp = n; // 特征个数
stumpTrainParams.userdata = &userdata;
stumpTrainParams.sortedIdx = data->idxcache; // 特征-样本序号矩阵(排序之后) trainParams.count = numsplits;
trainParams.stumpTrainParams = (CvClassifierTrainParams*) &stumpTrainParams;
trainParams.stumpConstructor = cvCreateMTStumpClassifier; // 筛选最优弱分类器
trainParams.splitIdx = icvSplitIndicesCallback; // 没用到过
trainParams.userdata = &userdata; //这是对cart弱分类器參数的设置 // 暂时向量。用于存放样本haar特征值,数据的类型是32位浮点型单通道。 eval = cvMat( 1, m, CV_32FC1, cvAlloc( sizeof( float ) * m ) );
storage = cvCreateMemStorage();
// 最优弱分类器存储序列
seq = cvCreateSeq( 0, sizeof( *seq ), sizeof( classifier ), storage ); // 样本类别,仅仅有logitboost才会用到
weakTrainVals = cvCreateMat( 1, m, CV_32FC1 ); // 初始化样本类别与权重。weakTrainVals为{-1, 1},权重都一样
trainer = cvBoostStartTraining( &data->cls, weakTrainVals, &data->weights,
sampleIdx, boosttype );
num_splits = 0;
sumalpha = 0.0F;
do
{
#ifdef CV_VERBOSE
int v_wt = 0;
int v_flipped = 0;
#endif /* CV_VERBOSE */ trimmedIdx = cvTrimWeights( &data->weights, sampleIdx, weightfraction );
numtrimmed = (trimmedIdx) ? MAX( trimmedIdx->rows, trimmedIdx->cols ) : m; #ifdef CV_VERBOSE
v_wt = 100 * numtrimmed / numsamples;
v_flipped = 0; #endif /* CV_VERBOSE */ // 重要函数,创建CART树的同一时候,计算出当前最优弱分类器,一般仅仅有根节点
cart = (CvCARTClassifier*) cvCreateCARTClassifier( data->valcache,
flags,
weakTrainVals, 0, 0, 0, trimmedIdx,
&(data->weights),
(CvClassifierTrainParams*) &trainParams ); // 创建弱分类器
classifier = (CvCARTHaarClassifier*) icvCreateCARTHaarClassifier( numsplits ); // 将CART树转化为弱分类器
icvInitCARTHaarClassifier( classifier, cart, haarFeatures ); num_splits += classifier->count; cart->release( (CvClassifier**) &cart ); // 为何一定要在奇数个弱分类器处计算?
if( symmetric && (seq->total % 2) )
{
float normfactor = 0.0F;
CvStumpClassifier* stump; /* 翻转HAAR特征 */
for( i = 0; i < classifier->count; i++ )
{
if( classifier->feature[i].desc[0] == 'h' )
{
for( j = 0; j < CV_HAAR_FEATURE_MAX &&
classifier->feature[i].rect[j].weight != 0.0F; j++ )
{
classifier->feature[i].rect[j].r.x = data->winsize.width -
classifier->feature[i].rect[j].r.x -
classifier->feature[i].rect[j].r.width;
}
}
else
{
int tmp = 0; /* (x,y) -> (24-x,y) */
/* w -> h; h -> w */
for( j = 0; j < CV_HAAR_FEATURE_MAX &&
classifier->feature[i].rect[j].weight != 0.0F; j++ )
{
classifier->feature[i].rect[j].r.x = data->winsize.width -
classifier->feature[i].rect[j].r.x;
CV_SWAP( classifier->feature[i].rect[j].r.width,
classifier->feature[i].rect[j].r.height, tmp );
}
}
} // 转化为基于积分图计算的特征
icvConvertToFastHaarFeature( classifier->feature,
classifier->fastfeature,
classifier->count, data->winsize.width + 1 ); // 为了验证最新翻转特征是否为最优特征
stumpTrainParams.getTrainData = NULL;
stumpTrainParams.numcomp = 1;
stumpTrainParams.userdata = NULL;
stumpTrainParams.sortedIdx = NULL; // 验证是否新生成的特征可作为最优弱分类器
for( i = 0; i < classifier->count; i++ )
{
for( j = 0; j < numtrimmed; j++ )
{
// 获取训练样本
idx = icvGetIdxAt( trimmedIdx, j ); // 对每一个训练样本计算Haar特征
eval.data.fl[idx] = cvEvalFastHaarFeature( &classifier->fastfeature[i],
(sum_type*) (data->sum.data.ptr + idx * data->sum.step),
(sum_type*) (data->tilted.data.ptr + idx * data->tilted.step) ); // 归一化因子
normfactor = data->normfactor.data.fl[idx]; // 对Haar特征归一化
eval.data.fl[idx] = ( normfactor == 0.0F )
? 0.0F : (eval.data.fl[idx] / normfactor);
} // 计算最优弱分类器
stump = (CvStumpClassifier*) trainParams.stumpConstructor( &eval,
CV_COL_SAMPLE,
weakTrainVals, 0, 0, 0, trimmedIdx,
&(data->weights),
trainParams.stumpTrainParams ); classifier->threshold[i] = stump->threshold; // 阈值
if( classifier->left[i] <= 0 )
{
classifier->val[-classifier->left[i]] = stump->left; // 左分支输出置信度
}
if( classifier->right[i] <= 0 )
{
classifier->val[-classifier->right[i]] = stump->right; // 右分支输出置信度
} stump->release( (CvClassifier**) &stump ); } // 还原參数,參数支持cvCreateCARTClassifier函数
stumpTrainParams.getTrainData = icvGetTrainingDataCallback;
stumpTrainParams.numcomp = n;
stumpTrainParams.userdata = &userdata;
stumpTrainParams.sortedIdx = data->idxcache; #ifdef CV_VERBOSE
v_flipped = 1;
#endif /* CV_VERBOSE */ } /* if symmetric */
if( trimmedIdx != sampleIdx )
{
cvReleaseMat( &trimmedIdx );
trimmedIdx = NULL;
} // 基于当前最优弱分类器,更新样本特征值
for( i = 0; i < numsamples; i++ )
{
idx = icvGetIdxAt( sampleIdx, i ); eval.data.fl[idx] = classifier->eval( (CvIntHaarClassifier*) classifier,
(sum_type*) (data->sum.data.ptr + idx * data->sum.step),
(sum_type*) (data->tilted.data.ptr + idx * data->tilted.step),
data->normfactor.data.fl[idx] );
} // 更新样本权重,假设是LogitBoost。也会更新weakTrainVals
alpha = cvBoostNextWeakClassifier( &eval, &data->cls, weakTrainVals,
&data->weights, trainer ); // 这个变量没什么用
sumalpha += alpha; for( i = 0; i <= classifier->count; i++ )
{
if( boosttype == CV_RABCLASS )
{
classifier->val[i] = cvLogRatio( classifier->val[i] );
}
classifier->val[i] *= alpha;
} // 加入弱分类器
cvSeqPush( seq, (void*) &classifier ); // 正样本个数
numpos = 0; // 遍历sampleIdx中全部样本
for( i = 0; i < numsamples; i++ )
{
// 获得样本序号
idx = icvGetIdxAt( sampleIdx, i ); // 假设样本为正样本
if( data->cls.data.fl[idx] == 1.0F )
{
// 初始化特征值
eval.data.fl[numpos] = 0.0F; // 遍历seq中全部弱分类器
for( j = 0; j < seq->total; j++ )
{
// 获取弱分类器
classifier = *((CvCARTHaarClassifier**) cvGetSeqElem( seq, j )); // 累积计算当前正样本的弱分类器输出结果
eval.data.fl[numpos] += classifier->eval(
(CvIntHaarClassifier*) classifier,
(sum_type*) (data->sum.data.ptr + idx * data->sum.step),
(sum_type*) (data->tilted.data.ptr + idx * data->tilted.step),
data->normfactor.data.fl[idx] );
}
/* eval.data.fl[numpos] = 2.0F * eval.data.fl[numpos] - seq->total; */
numpos++;
}
} // 对输出结果值排序
icvSort_32f( eval.data.fl, numpos, 0 ); // 计算阈值,应该是大于threshold则为正类。小于threshold则为负类
threshold = eval.data.fl[(int) ((1.0F - minhitrate) * numpos)]; numneg = 0;
numfalse = 0; // 遍历全部样本
for( i = 0; i < numsamples; i++ )
{
idx = icvGetIdxAt( sampleIdx, i ); // 假设样本为负样本
if( data->cls.data.fl[idx] == 0.0F )
{
numneg++;
sum_stage = 0.0F; // 遍历seq中全部弱分类器
for( j = 0; j < seq->total; j++ )
{
classifier = *((CvCARTHaarClassifier**) cvGetSeqElem( seq, j )); // 累积当前负样本的分类器输出结果
sum_stage += classifier->eval( (CvIntHaarClassifier*) classifier,
(sum_type*) (data->sum.data.ptr + idx * data->sum.step),
(sum_type*) (data->tilted.data.ptr + idx * data->tilted.step),
data->normfactor.data.fl[idx] );
}
/* sum_stage = 2.0F * sum_stage - seq->total; */ // 由于小于threshold为负类,所以以下是分类错误的情况
if( sum_stage >= (threshold - CV_THRESHOLD_EPS) )
{
numfalse++;
}
}
} // 计算虚警率
falsealarm = ((float) numfalse) / ((float) numneg); // 输出内容
#ifdef CV_VERBOSE
{
// 正样本检出率
float v_hitrate = 0.0F; // 负样本误检率
float v_falsealarm = 0.0F;
/* expected error of stage classifier regardless threshold */ // 这是什么?
float v_experr = 0.0F; // 遍历全部样本
for( i = 0; i < numsamples; i++ )
{
idx = icvGetIdxAt( sampleIdx, i ); sum_stage = 0.0F; // 遍历seq中全部弱分类器
for( j = 0; j < seq->total; j++ )
{
classifier = *((CvCARTHaarClassifier**) cvGetSeqElem( seq, j ));
sum_stage += classifier->eval( (CvIntHaarClassifier*) classifier,
(sum_type*) (data->sum.data.ptr + idx * data->sum.step),
(sum_type*) (data->tilted.data.ptr + idx * data->tilted.step),
data->normfactor.data.fl[idx] );
}
/* sum_stage = 2.0F * sum_stage - seq->total; */ // 仅仅须要推断单一分支就可以
if( sum_stage >= (threshold - CV_THRESHOLD_EPS) )
{
if( data->cls.data.fl[idx] == 1.0F )
{
v_hitrate += 1.0F;
}
else
{
v_falsealarm += 1.0F;
}
} // 正类样本的sum_stage必须大于0
if( ( sum_stage >= 0.0F ) != (data->cls.data.fl[idx] == 1.0F) )
{
v_experr += 1.0F;
}
}
v_experr /= numsamples;
printf( "|%4d|%3d%%|%c|%9f|%9f|%9f|%9f|\n",
seq->total, v_wt, ( (v_flipped) ? '+' : '-' ),
threshold, v_hitrate / numpos, v_falsealarm / numneg,
v_experr );
printf( "+----+----+-+---------+---------+---------+---------+\n" );
fflush( stdout );
}
#endif /* CV_VERBOSE */ // 两种收敛方式,一种是误检率小于规定阈值,还有一种是弱分类器个数小于规定阈值
} while( falsealarm > maxfalsealarm && (!maxsplits || (num_splits < maxsplits) ) );
cvBoostEndTraining( &trainer ); if( falsealarm > maxfalsealarm )
{
stage = NULL;
}
else
{
stage = (CvStageHaarClassifier*) icvCreateStageHaarClassifier( seq->total,
threshold );
cvCvtSeqToArray( seq, (CvArr*) stage->classifier );
} /* CLEANUP */
cvReleaseMemStorage( &storage );
cvReleaseMat( &weakTrainVals );
cvFree( &(eval.data.ptr) ); return (CvIntHaarClassifier*) stage;
} static
CvBackgroundData* icvCreateBackgroundData( const char* filename, CvSize winsize )
{
CvBackgroundData* data = NULL; const char* dir = NULL;
char full[PATH_MAX];
char* imgfilename = NULL;
size_t datasize = 0;
int count = 0;
FILE* input = NULL;
char* tmp = NULL;
int len = 0; assert( filename != NULL ); dir = strrchr( filename, '\\' );
if( dir == NULL )
{
dir = strrchr( filename, '/' );
}
if( dir == NULL )
{
imgfilename = &(full[0]);
}
else
{
strncpy( &(full[0]), filename, (dir - filename + 1) );
imgfilename = &(full[(dir - filename + 1)]);
} input = fopen( filename, "r" );
if( input != NULL )
{
count = 0;
datasize = 0; /* count */
while( !feof( input ) )
{
*imgfilename = '\0';
if( !fgets( imgfilename, PATH_MAX - (int)(imgfilename - full) - 1, input ))
break;
len = (int)strlen( imgfilename );
for( ; len > 0 && isspace(imgfilename[len-1]); len-- )
imgfilename[len-1] = '\0';
if( len > 0 )
{
if( (*imgfilename) == '#' ) continue; /* comment */
count++;
datasize += sizeof( char ) * (strlen( &(full[0]) ) + 1);
}
}
if( count > 0 )
{
//rewind( input );
fseek( input, 0, SEEK_SET );
datasize += sizeof( *data ) + sizeof( char* ) * count;
data = (CvBackgroundData*) cvAlloc( datasize );
memset( (void*) data, 0, datasize );
data->count = count;
data->filename = (char**) (data + 1);
data->last = 0;
data->round = 0;
data->winsize = winsize;
tmp = (char*) (data->filename + data->count);
count = 0;
while( !feof( input ) )
{
*imgfilename = '\0';
if( !fgets( imgfilename, PATH_MAX - (int)(imgfilename - full) - 1, input ))
break;
len = (int)strlen( imgfilename );
if( len > 0 && imgfilename[len-1] == '\n' )
imgfilename[len-1] = 0, len--;
if( len > 0 )
{
if( (*imgfilename) == '#' ) continue; /* comment */
data->filename[count++] = tmp;
strcpy( tmp, &(full[0]) );
tmp += strlen( &(full[0]) ) + 1;
}
}
}
fclose( input );
} return data;
} static
void icvReleaseBackgroundData( CvBackgroundData** data )
{
assert( data != NULL && (*data) != NULL ); cvFree( data );
} static
CvBackgroundReader* icvCreateBackgroundReader()
{
CvBackgroundReader* reader = NULL; reader = (CvBackgroundReader*) cvAlloc( sizeof( *reader ) );
memset( (void*) reader, 0, sizeof( *reader ) );
reader->src = cvMat( 0, 0, CV_8UC1, NULL );
reader->img = cvMat( 0, 0, CV_8UC1, NULL );
reader->offset = cvPoint( 0, 0 );
reader->scale = 1.0F;
reader->scalefactor = 1.4142135623730950488016887242097F;
reader->stepfactor = 0.5F;
reader->point = reader->offset; return reader;
} static
void icvReleaseBackgroundReader( CvBackgroundReader** reader )
{
assert( reader != NULL && (*reader) != NULL ); if( (*reader)->src.data.ptr != NULL )
{
cvFree( &((*reader)->src.data.ptr) );
}
if( (*reader)->img.data.ptr != NULL )
{
cvFree( &((*reader)->img.data.ptr) );
} cvFree( reader );
} static
void icvGetNextFromBackgroundData( CvBackgroundData* data,
CvBackgroundReader* reader )
{
IplImage* img = NULL;
size_t datasize = 0;
int round = 0;
int i = 0;
CvPoint offset = cvPoint(0,0); assert( data != NULL && reader != NULL ); if( reader->src.data.ptr != NULL )
{
cvFree( &(reader->src.data.ptr) );
reader->src.data.ptr = NULL;
}
if( reader->img.data.ptr != NULL )
{
cvFree( &(reader->img.data.ptr) );
reader->img.data.ptr = NULL;
} #ifdef CV_OPENMP
#pragma omp critical(c_background_data)
#endif /* CV_OPENMP */
{
for( i = 0; i < data->count; i++ )
{
round = data->round; //#ifdef CV_VERBOSE
// printf( "Open background image: %s\n", data->filename[data->last] );
//#endif /* CV_VERBOSE */ data->last = rand() % data->count;
data->last %= data->count;
img = cvLoadImage( data->filename[data->last], 0 );
if( !img )
continue;
data->round += data->last / data->count;
data->round = data->round % (data->winsize.width * data->winsize.height); offset.x = round % data->winsize.width;
offset.y = round / data->winsize.width; offset.x = MIN( offset.x, img->width - data->winsize.width );
offset.y = MIN( offset.y, img->height - data->winsize.height ); if( img != NULL && img->depth == IPL_DEPTH_8U && img->nChannels == 1 &&
offset.x >= 0 && offset.y >= 0 )
{
break;
}
if( img != NULL )
cvReleaseImage( &img );
img = NULL;
}
}
if( img == NULL )
{
/* no appropriate image */ #ifdef CV_VERBOSE
printf( "Invalid background description file.\n" );
#endif /* CV_VERBOSE */ assert( 0 );
exit( 1 );
}
datasize = sizeof( uchar ) * img->width * img->height;
reader->src = cvMat( img->height, img->width, CV_8UC1, (void*) cvAlloc( datasize ) );
cvCopy( img, &reader->src, NULL );
cvReleaseImage( &img );
img = NULL; //reader->offset.x = round % data->winsize.width;
//reader->offset.y = round / data->winsize.width;
reader->offset = offset;
reader->point = reader->offset;
reader->scale = MAX(
((float) data->winsize.width + reader->point.x) / ((float) reader->src.cols),
((float) data->winsize.height + reader->point.y) / ((float) reader->src.rows) ); reader->img = cvMat( (int) (reader->scale * reader->src.rows + 0.5F),
(int) (reader->scale * reader->src.cols + 0.5F),
CV_8UC1, (void*) cvAlloc( datasize ) );
cvResize( &(reader->src), &(reader->img) );
} /*
* icvGetBackgroundImage
*
* Get an image from background
* <img> must be allocated and have size, previously passed to icvInitBackgroundReaders
*
* Usage example:
* icvInitBackgroundReaders( "bg.txt", cvSize( 24, 24 ) );
* ...
* #pragma omp parallel
* {
* ...
* icvGetBackgourndImage( cvbgdata, cvbgreader, img );
* ...
* }
* ...
* icvDestroyBackgroundReaders();
*/
static
void icvGetBackgroundImage( CvBackgroundData* data,
CvBackgroundReader* reader,
CvMat* img )
{
CvMat mat; assert( data != NULL && reader != NULL && img != NULL );
assert( CV_MAT_TYPE( img->type ) == CV_8UC1 );
assert( img->cols == data->winsize.width );
assert( img->rows == data->winsize.height ); if( reader->img.data.ptr == NULL )
{
icvGetNextFromBackgroundData( data, reader );
} mat = cvMat( data->winsize.height, data->winsize.width, CV_8UC1 );
cvSetData( &mat, (void*) (reader->img.data.ptr + reader->point.y * reader->img.step
+ reader->point.x * sizeof( uchar )), reader->img.step ); cvCopy( &mat, img, 0 );
if( (int) ( reader->point.x + (1.0F + reader->stepfactor ) * data->winsize.width )
< reader->img.cols )
{
reader->point.x += (int) (reader->stepfactor * data->winsize.width);
}
else
{
reader->point.x = reader->offset.x;
if( (int) ( reader->point.y + (1.0F + reader->stepfactor ) * data->winsize.height )
< reader->img.rows )
{
reader->point.y += (int) (reader->stepfactor * data->winsize.height);
}
else
{
reader->point.y = reader->offset.y;
reader->scale *= reader->scalefactor;
if( reader->scale <= 1.0F )
{
reader->img = cvMat( (int) (reader->scale * reader->src.rows),
(int) (reader->scale * reader->src.cols),
CV_8UC1, (void*) (reader->img.data.ptr) );
cvResize( &(reader->src), &(reader->img) );
}
else
{
icvGetNextFromBackgroundData( data, reader );
}
}
}
} /*
* icvInitBackgroundReaders
*
* Initialize background reading process.
* <cvbgreader> and <cvbgdata> are initialized.
* Must be called before any usage of background
*
* filename - name of background description file
* winsize - size of images will be obtained from background
*
* return 1 on success, 0 otherwise.
*/
static
int icvInitBackgroundReaders( const char* filename, CvSize winsize )
{
if( cvbgdata == NULL && filename != NULL )
{
cvbgdata = icvCreateBackgroundData( filename, winsize );
} if( cvbgdata )
{ #ifdef CV_OPENMP
#pragma omp parallel
#endif /* CV_OPENMP */
{
#ifdef CV_OPENMP
#pragma omp critical(c_create_bg_data)
#endif /* CV_OPENMP */
{
if( cvbgreader == NULL )
{
cvbgreader = icvCreateBackgroundReader();
}
}
} } return (cvbgdata != NULL);
} /*
* icvDestroyBackgroundReaders
*
* Finish backgournd reading process
*/
static
void icvDestroyBackgroundReaders()
{
/* release background reader in each thread */
#ifdef CV_OPENMP
#pragma omp parallel
#endif /* CV_OPENMP */
{
#ifdef CV_OPENMP
#pragma omp critical(c_release_bg_data)
#endif /* CV_OPENMP */
{
if( cvbgreader != NULL )
{
icvReleaseBackgroundReader( &cvbgreader );
cvbgreader = NULL;
}
}
} if( cvbgdata != NULL )
{
icvReleaseBackgroundData( &cvbgdata );
cvbgdata = NULL;
}
} /*
* icvGetAuxImages
*
* Get sum, tilted, sqsum images and calculate normalization factor
* All images must be allocated.
*/
static
void icvGetAuxImages( CvMat* img, CvMat* sum, CvMat* tilted,
CvMat* sqsum, float* normfactor )
{
CvRect normrect;
int p0, p1, p2, p3;
sum_type valsum = 0;
sqsum_type valsqsum = 0;
double area = 0.0; cvIntegral( img, sum, sqsum, tilted );
normrect = cvRect( 1, 1, img->cols - 2, img->rows - 2 );
CV_SUM_OFFSETS( p0, p1, p2, p3, normrect, img->cols + 1 ) area = normrect.width * normrect.height;
valsum = ((sum_type*) (sum->data.ptr))[p0] - ((sum_type*) (sum->data.ptr))[p1]
- ((sum_type*) (sum->data.ptr))[p2] + ((sum_type*) (sum->data.ptr))[p3];
valsqsum = ((sqsum_type*) (sqsum->data.ptr))[p0]
- ((sqsum_type*) (sqsum->data.ptr))[p1]
- ((sqsum_type*) (sqsum->data.ptr))[p2]
+ ((sqsum_type*) (sqsum->data.ptr))[p3]; /* sqrt( valsqsum / area - ( valsum / are )^2 ) * area */
(*normfactor) = (float) sqrt( (double) (area * valsqsum - (double)valsum * valsum) );
} /* consumed counter */
typedef uint64 ccounter_t; #define CCOUNTER_MAX CV_BIG_UINT(0xffffffffffffffff)
#define CCOUNTER_SET_ZERO(cc) ((cc) = 0)
#define CCOUNTER_INC(cc) ( (CCOUNTER_MAX > (cc) ) ? (++(cc)) : (CCOUNTER_MAX) )
#define CCOUNTER_ADD(cc0, cc1) ( ((CCOUNTER_MAX-(cc1)) > (cc0) ) ? ((cc0) += (cc1)) : ((cc0) = CCOUNTER_MAX) )
#define CCOUNTER_DIV(cc0, cc1) ( ((cc1) == 0) ? 0 : ( ((double)(cc0))/(double)(int64)(cc1) ) ) /*
* icvGetHaarTrainingData
*
* Unified method that can now be used for vec file, bg file and bg vec file
*
* Fill <data> with samples, passed <cascade>
*/
static
int icvGetHaarTrainingData( CvHaarTrainingData* data, int first, int count,
CvIntHaarClassifier* cascade,
CvGetHaarTrainingDataCallback callback, void* userdata,
int* consumed, double* acceptance_ratio )
{
int i = 0;
ccounter_t getcount = 0;
ccounter_t thread_getcount = 0;
ccounter_t consumed_count;
ccounter_t thread_consumed_count; /* private variables */
CvMat img;
CvMat sum;
CvMat tilted;
CvMat sqsum; sum_type* sumdata;
sum_type* tilteddata;
float* normfactor; /* end private variables */ assert( data != NULL );
assert( first + count <= data->maxnum );
assert( cascade != NULL );
assert( callback != NULL ); // if( !cvbgdata ) return 0; this check needs to be done in the callback for BG CCOUNTER_SET_ZERO(getcount);
CCOUNTER_SET_ZERO(thread_getcount);
CCOUNTER_SET_ZERO(consumed_count);
CCOUNTER_SET_ZERO(thread_consumed_count); #ifdef CV_OPENMP
#pragma omp parallel private(img, sum, tilted, sqsum, sumdata, tilteddata, \
normfactor, thread_consumed_count, thread_getcount)
#endif /* CV_OPENMP */
{
sumdata = NULL;
tilteddata = NULL;
normfactor = NULL; CCOUNTER_SET_ZERO(thread_getcount);
CCOUNTER_SET_ZERO(thread_consumed_count);
int ok = 1; img = cvMat( data->winsize.height, data->winsize.width, CV_8UC1,
cvAlloc( sizeof( uchar ) * data->winsize.height * data->winsize.width ) );
sum = cvMat( data->winsize.height + 1, data->winsize.width + 1,
CV_SUM_MAT_TYPE, NULL );
tilted = cvMat( data->winsize.height + 1, data->winsize.width + 1,
CV_SUM_MAT_TYPE, NULL );
sqsum = cvMat( data->winsize.height + 1, data->winsize.width + 1, CV_SQSUM_MAT_TYPE,
cvAlloc( sizeof( sqsum_type ) * (data->winsize.height + 1)
* (data->winsize.width + 1) ) ); #ifdef CV_OPENMP
#pragma omp for schedule(static, 1)
#endif /* CV_OPENMP */
for( i = first; (i < first + count); i++ )
{
if( !ok )
continue;
for( ; ; )
{
ok = callback( &img, userdata );
if( !ok )
break; CCOUNTER_INC(thread_consumed_count); sumdata = (sum_type*) (data->sum.data.ptr + i * data->sum.step);
tilteddata = (sum_type*) (data->tilted.data.ptr + i * data->tilted.step);
normfactor = data->normfactor.data.fl + i;
sum.data.ptr = (uchar*) sumdata;
tilted.data.ptr = (uchar*) tilteddata;
icvGetAuxImages( &img, &sum, &tilted, &sqsum, normfactor );
if( cascade->eval( cascade, sumdata, tilteddata, *normfactor ) != 0.0F )
{
CCOUNTER_INC(thread_getcount);
break;
}
} #ifdef CV_VERBOSE
if( (i - first) % 500 == 0 )
{
fprintf( stderr, "%3d%%\r", (int) ( 100.0 * (i - first) / count ) );
fflush( stderr );
}
#endif /* CV_VERBOSE */
} cvFree( &(img.data.ptr) );
cvFree( &(sqsum.data.ptr) ); #ifdef CV_OPENMP
#pragma omp critical (c_consumed_count)
#endif /* CV_OPENMP */
{
/* consumed_count += thread_consumed_count; */
CCOUNTER_ADD(getcount, thread_getcount);
CCOUNTER_ADD(consumed_count, thread_consumed_count);
}
} /* omp parallel */ if( consumed != NULL )
{
*consumed = (int)consumed_count;
} if( acceptance_ratio != NULL )
{
/* *acceptance_ratio = ((double) count) / consumed_count; */
*acceptance_ratio = CCOUNTER_DIV(count, consumed_count);
} return static_cast<int>(getcount);
} /*
* icvGetHaarTrainingDataFromBG
*
* Fill <data> with background samples, passed <cascade>
* Background reading process must be initialized before call.
*/
//static
//int icvGetHaarTrainingDataFromBG( CvHaarTrainingData* data, int first, int count,
// CvIntHaarClassifier* cascade, double* acceptance_ratio )
//{
// int i = 0;
// ccounter_t consumed_count;
// ccounter_t thread_consumed_count;
//
// /* private variables */
// CvMat img;
// CvMat sum;
// CvMat tilted;
// CvMat sqsum;
//
// sum_type* sumdata;
// sum_type* tilteddata;
// float* normfactor;
//
// /* end private variables */
//
// assert( data != NULL );
// assert( first + count <= data->maxnum );
// assert( cascade != NULL );
//
// if( !cvbgdata ) return 0;
//
// CCOUNTER_SET_ZERO(consumed_count);
// CCOUNTER_SET_ZERO(thread_consumed_count);
//
// #ifdef CV_OPENMP
// #pragma omp parallel private(img, sum, tilted, sqsum, sumdata, tilteddata,
// normfactor, thread_consumed_count)
// #endif /* CV_OPENMP */
// {
// sumdata = NULL;
// tilteddata = NULL;
// normfactor = NULL;
//
// CCOUNTER_SET_ZERO(thread_consumed_count);
//
// img = cvMat( data->winsize.height, data->winsize.width, CV_8UC1,
// cvAlloc( sizeof( uchar ) * data->winsize.height * data->winsize.width ) );
// sum = cvMat( data->winsize.height + 1, data->winsize.width + 1,
// CV_SUM_MAT_TYPE, NULL );
// tilted = cvMat( data->winsize.height + 1, data->winsize.width + 1,
// CV_SUM_MAT_TYPE, NULL );
// sqsum = cvMat( data->winsize.height + 1, data->winsize.width + 1,
// CV_SQSUM_MAT_TYPE,
// cvAlloc( sizeof( sqsum_type ) * (data->winsize.height + 1)
// * (data->winsize.width + 1) ) );
//
// #ifdef CV_OPENMP
// #pragma omp for schedule(static, 1)
// #endif /* CV_OPENMP */
// for( i = first; i < first + count; i++ )
// {
// for( ; ; )
// {
// icvGetBackgroundImage( cvbgdata, cvbgreader, &img );
//
// CCOUNTER_INC(thread_consumed_count);
//
// sumdata = (sum_type*) (data->sum.data.ptr + i * data->sum.step);
// tilteddata = (sum_type*) (data->tilted.data.ptr + i * data->tilted.step);
// normfactor = data->normfactor.data.fl + i;
// sum.data.ptr = (uchar*) sumdata;
// tilted.data.ptr = (uchar*) tilteddata;
// icvGetAuxImages( &img, &sum, &tilted, &sqsum, normfactor );
// if( cascade->eval( cascade, sumdata, tilteddata, *normfactor ) != 0.0F )
// {
// break;
// }
// }
//
//#ifdef CV_VERBOSE
// if( (i - first) % 500 == 0 )
// {
// fprintf( stderr, "%3d%%\r", (int) ( 100.0 * (i - first) / count ) );
// fflush( stderr );
// }
//#endif /* CV_VERBOSE */
//
// }
//
// cvFree( &(img.data.ptr) );
// cvFree( &(sqsum.data.ptr) );
//
// #ifdef CV_OPENMP
// #pragma omp critical (c_consumed_count)
// #endif /* CV_OPENMP */
// {
// /* consumed_count += thread_consumed_count; */
// CCOUNTER_ADD(consumed_count, thread_consumed_count);
// }
// } /* omp parallel */
//
// if( acceptance_ratio != NULL )
// {
// /* *acceptance_ratio = ((double) count) / consumed_count; */
// *acceptance_ratio = CCOUNTER_DIV(count, consumed_count);
// }
//
// return count;
//} int icvGetHaarTraininDataFromVecCallback( CvMat* img, void* userdata )
{
uchar tmp = 0;
int r = 0;
int c = 0; assert( img->rows * img->cols == ((CvVecFile*) userdata)->vecsize ); size_t elements_read = fread( &tmp, sizeof( tmp ), 1, ((CvVecFile*) userdata)->input );
CV_Assert(elements_read == 1);
elements_read = fread( ((CvVecFile*) userdata)->vector, sizeof( short ),
((CvVecFile*) userdata)->vecsize, ((CvVecFile*) userdata)->input );
CV_Assert(elements_read == (size_t)((CvVecFile*) userdata)->vecsize); if( feof( ((CvVecFile*) userdata)->input ) ||
(((CvVecFile*) userdata)->last)++ >= ((CvVecFile*) userdata)->count )
{
return 0;
} for( r = 0; r < img->rows; r++ )
{
for( c = 0; c < img->cols; c++ )
{
CV_MAT_ELEM( *img, uchar, r, c ) =
(uchar) ( ((CvVecFile*) userdata)->vector[r * img->cols + c] );
}
} return 1;
} static int icvGetHaarTrainingDataFromBGCallback ( CvMat* img, void* /*userdata*/ )
{
if (! cvbgdata)
return 0; if (! cvbgreader)
return 0; // just in case icvGetBackgroundImage is not thread-safe ...
#ifdef CV_OPENMP
#pragma omp critical (get_background_image_callback)
#endif /* CV_OPENMP */
{
icvGetBackgroundImage( cvbgdata, cvbgreader, img );
} return 1;
} /*
* icvGetHaarTrainingDataFromVec
* Get training data from .vec file
*/
static
int icvGetHaarTrainingDataFromVec( CvHaarTrainingData* data, int first, int count,
CvIntHaarClassifier* cascade,
const char* filename,
int* consumed )
{
int getcount = 0; CV_FUNCNAME( "icvGetHaarTrainingDataFromVec" ); __BEGIN__; CvVecFile file;
short tmp = 0; file.input = NULL;
if( filename ) file.input = fopen( filename, "rb" ); if( file.input != NULL )
{
size_t elements_read1 = fread( &file.count, sizeof( file.count ), 1, file.input );
size_t elements_read2 = fread( &file.vecsize, sizeof( file.vecsize ), 1, file.input );
size_t elements_read3 = fread( &tmp, sizeof( tmp ), 1, file.input );
size_t elements_read4 = fread( &tmp, sizeof( tmp ), 1, file.input );
CV_Assert(elements_read1 == 1 && elements_read2 == 1 && elements_read3 == 1 && elements_read4 == 1); if( !feof( file.input ) )
{
if( file.vecsize != data->winsize.width * data->winsize.height )
{
fclose( file.input );
CV_ERROR( CV_StsError, "Vec file sample size mismatch" );
} file.last = 0;
file.vector = (short*) cvAlloc( sizeof( *file.vector ) * file.vecsize );
getcount = icvGetHaarTrainingData( data, first, count, cascade,
icvGetHaarTraininDataFromVecCallback, &file, consumed, NULL);
cvFree( &file.vector );
}
fclose( file.input );
} __END__; return getcount;
} /*
* icvGetHaarTrainingDataFromBG
*
* Fill <data> with background samples, passed <cascade>
* Background reading process must be initialized before call, alternaly, a file
* name to a vec file may be passed, a NULL filename indicates old behaviour
*/
static
int icvGetHaarTrainingDataFromBG( CvHaarTrainingData* data, int first, int count,
CvIntHaarClassifier* cascade, double* acceptance_ratio, const char * filename = NULL )
{
CV_FUNCNAME( "icvGetHaarTrainingDataFromBG" ); __BEGIN__; if (filename)
{
CvVecFile file;
short tmp = 0; file.input = NULL;
if( filename ) file.input = fopen( filename, "rb" ); if( file.input != NULL )
{
size_t elements_read1 = fread( &file.count, sizeof( file.count ), 1, file.input );
size_t elements_read2 = fread( &file.vecsize, sizeof( file.vecsize ), 1, file.input );
size_t elements_read3 = fread( &tmp, sizeof( tmp ), 1, file.input );
size_t elements_read4 = fread( &tmp, sizeof( tmp ), 1, file.input );
CV_Assert(elements_read1 == 1 && elements_read2 == 1 && elements_read3 == 1 && elements_read4 == 1);
if( !feof( file.input ) )
{
if( file.vecsize != data->winsize.width * data->winsize.height )
{
fclose( file.input );
CV_ERROR( CV_StsError, "Vec file sample size mismatch" );
} file.last = 0;
file.vector = (short*) cvAlloc( sizeof( *file.vector ) * file.vecsize );
icvGetHaarTrainingData( data, first, count, cascade,
icvGetHaarTraininDataFromVecCallback, &file, NULL, acceptance_ratio);
cvFree( &file.vector );
}
fclose( file.input );
}
}
else
{
icvGetHaarTrainingData( data, first, count, cascade,
icvGetHaarTrainingDataFromBGCallback, NULL, NULL, acceptance_ratio);
} __END__; return count;
} void cvCreateCascadeClassifier( const char* dirname,
const char* vecfilename,
const char* bgfilename,
int npos, int nneg, int nstages,
int numprecalculated,
int numsplits,
float minhitrate, float maxfalsealarm,
float weightfraction,
int mode, int symmetric,
int equalweights,
int winwidth, int winheight,
int boosttype, int stumperror )
{
CvCascadeHaarClassifier* cascade = NULL;
CvHaarTrainingData* data = NULL;
CvIntHaarFeatures* haar_features;
CvSize winsize;
int i = 0;
int j = 0;
int poscount = 0;
int negcount = 0;
int consumed = 0;
double false_alarm = 0;
char stagename[PATH_MAX];
float posweight = 1.0F;
float negweight = 1.0F;
FILE* file; #ifdef CV_VERBOSE
double proctime = 0.0F;
#endif /* CV_VERBOSE */ assert( dirname != NULL );
assert( bgfilename != NULL );
assert( vecfilename != NULL );
assert( nstages > 0 ); winsize = cvSize( winwidth, winheight ); cascade = (CvCascadeHaarClassifier*) icvCreateCascadeHaarClassifier( nstages );
cascade->count = 0; if( icvInitBackgroundReaders( bgfilename, winsize ) )
{
data = icvCreateHaarTrainingData( winsize, npos + nneg );
haar_features = icvCreateIntHaarFeatures( winsize, mode, symmetric ); #ifdef CV_VERBOSE
printf("Number of features used : %d\n", haar_features->count);
#endif /* CV_VERBOSE */ for( i = 0; i < nstages; i++, cascade->count++ )
{
sprintf( stagename, "%s%d/%s", dirname, i, CV_STAGE_CART_FILE_NAME );
cascade->classifier[i] =
icvLoadCARTStageHaarClassifier( stagename, winsize.width + 1 ); if( !icvMkDir( stagename ) )
{ #ifdef CV_VERBOSE
printf( "UNABLE TO CREATE DIRECTORY: %s\n", stagename );
#endif /* CV_VERBOSE */ break;
}
if( cascade->classifier[i] != NULL )
{ #ifdef CV_VERBOSE
printf( "STAGE: %d LOADED.\n", i );
#endif /* CV_VERBOSE */ continue;
} #ifdef CV_VERBOSE
printf( "STAGE: %d\n", i );
#endif /* CV_VERBOSE */ poscount = icvGetHaarTrainingDataFromVec( data, 0, npos,
(CvIntHaarClassifier*) cascade, vecfilename, &consumed );
#ifdef CV_VERBOSE
printf( "POS: %d %d %f\n", poscount, consumed,
((float) poscount) / consumed );
#endif /* CV_VERBOSE */ if( poscount <= 0 )
{ #ifdef CV_VERBOSE
printf( "UNABLE TO OBTAIN POS SAMPLES\n" );
#endif /* CV_VERBOSE */ break;
} #ifdef CV_VERBOSE
proctime = -TIME( 0 );
#endif /* CV_VERBOSE */ negcount = icvGetHaarTrainingDataFromBG( data, poscount, nneg,
(CvIntHaarClassifier*) cascade, &false_alarm );
#ifdef CV_VERBOSE
printf( "NEG: %d %g\n", negcount, false_alarm );
printf( "BACKGROUND PROCESSING TIME: %.2f\n",
(proctime + TIME( 0 )) );
#endif /* CV_VERBOSE */ if( negcount <= 0 )
{ #ifdef CV_VERBOSE
printf( "UNABLE TO OBTAIN NEG SAMPLES\n" );
#endif /* CV_VERBOSE */ break;
} data->sum.rows = data->tilted.rows = poscount + negcount;
data->normfactor.cols = data->weights.cols = data->cls.cols =
poscount + negcount; posweight = (equalweights) ? 1.0F / (poscount + negcount) : (0.5F / poscount);
negweight = (equalweights) ? 1.0F / (poscount + negcount) : (0.5F / negcount);
for( j = 0; j < poscount; j++ )
{
data->weights.data.fl[j] = posweight;
data->cls.data.fl[j] = 1.0F; }
for( j = poscount; j < poscount + negcount; j++ )
{
data->weights.data.fl[j] = negweight;
data->cls.data.fl[j] = 0.0F;
} #ifdef CV_VERBOSE
proctime = -TIME( 0 );
#endif /* CV_VERBOSE */ icvPrecalculate( data, haar_features, numprecalculated ); #ifdef CV_VERBOSE
printf( "PRECALCULATION TIME: %.2f\n", (proctime + TIME( 0 )) );
#endif /* CV_VERBOSE */ #ifdef CV_VERBOSE
proctime = -TIME( 0 );
#endif /* CV_VERBOSE */ cascade->classifier[i] = icvCreateCARTStageClassifier( data, NULL,
haar_features, minhitrate, maxfalsealarm, symmetric, weightfraction,
numsplits, (CvBoostType) boosttype, (CvStumpError) stumperror, 0 ); #ifdef CV_VERBOSE
printf( "STAGE TRAINING TIME: %.2f\n", (proctime + TIME( 0 )) );
#endif /* CV_VERBOSE */ file = fopen( stagename, "w" );
if( file != NULL )
{
cascade->classifier[i]->save(
(CvIntHaarClassifier*) cascade->classifier[i], file );
fclose( file );
}
else
{ #ifdef CV_VERBOSE
printf( "FAILED TO SAVE STAGE CLASSIFIER IN FILE %s\n", stagename );
#endif /* CV_VERBOSE */ } }
icvReleaseIntHaarFeatures( &haar_features );
icvReleaseHaarTrainingData( &data ); if( i == nstages )
{
char xml_path[1024];
int len = (int)strlen(dirname);
CvHaarClassifierCascade* cascade1 = 0;
strcpy( xml_path, dirname );
if( xml_path[len-1] == '\\' || xml_path[len-1] == '/' )
len--;
strcpy( xml_path + len, ".xml" );
cascade1 = cvLoadHaarClassifierCascade( dirname, cvSize(winwidth,winheight) );
if( cascade1 )
cvSave( xml_path, cascade1 );
cvReleaseHaarClassifierCascade( &cascade1 );
}
}
else
{
#ifdef CV_VERBOSE
printf( "FAILED TO INITIALIZE BACKGROUND READERS\n" );
#endif /* CV_VERBOSE */
} /* CLEAN UP */
icvDestroyBackgroundReaders();
cascade->release( (CvIntHaarClassifier**) &cascade );
} /* tree cascade classifier */ static int icvNumSplits( CvStageHaarClassifier* stage )
{
int i;
int num; num = 0;
for( i = 0; i < stage->count; i++ )
{
num += ((CvCARTHaarClassifier*) stage->classifier[i])->count;
} return num;
} static void icvSetNumSamples( CvHaarTrainingData* training_data, int num )
{
assert( num <= training_data->maxnum ); training_data->sum.rows = training_data->tilted.rows = num;
training_data->normfactor.cols = num;
training_data->cls.cols = training_data->weights.cols = num;
} static void icvSetWeightsAndClasses( CvHaarTrainingData* training_data,
int num1, float weight1, float cls1,
int num2, float weight2, float cls2 )
{
int j; assert( num1 + num2 <= training_data->maxnum ); for( j = 0; j < num1; j++ )
{
training_data->weights.data.fl[j] = weight1;
training_data->cls.data.fl[j] = cls1;
}
for( j = num1; j < num1 + num2; j++ )
{
training_data->weights.data.fl[j] = weight2;
training_data->cls.data.fl[j] = cls2;
}
} static CvMat* icvGetUsedValues( CvHaarTrainingData* training_data,
int start, int num,
CvIntHaarFeatures* haar_features,
CvStageHaarClassifier* stage )
{
CvMat* ptr = NULL;
CvMat* feature_idx = NULL; CV_FUNCNAME( "icvGetUsedValues" ); __BEGIN__; int num_splits;
int i, j;
int r;
int total, last; num_splits = icvNumSplits( stage ); CV_CALL( feature_idx = cvCreateMat( 1, num_splits, CV_32SC1 ) ); total = 0;
for( i = 0; i < stage->count; i++ )
{
CvCARTHaarClassifier* cart; cart = (CvCARTHaarClassifier*) stage->classifier[i];
for( j = 0; j < cart->count; j++ )
{
feature_idx->data.i[total++] = cart->compidx[j];
}
}
icvSort_32s( feature_idx->data.i, total, 0 ); last = 0;
for( i = 1; i < total; i++ )
{
if( feature_idx->data.i[i] != feature_idx->data.i[last] )
{
feature_idx->data.i[++last] = feature_idx->data.i[i];
}
}
total = last + 1;
CV_CALL( ptr = cvCreateMat( num, total, CV_32FC1 ) ); #ifdef CV_OPENMP
#pragma omp parallel for
#endif
for( r = start; r < start + num; r++ )
{
int c; for( c = 0; c < total; c++ )
{
float val, normfactor;
int fnum; fnum = feature_idx->data.i[c]; val = cvEvalFastHaarFeature( haar_features->fastfeature + fnum,
(sum_type*) (training_data->sum.data.ptr
+ r * training_data->sum.step),
(sum_type*) (training_data->tilted.data.ptr
+ r * training_data->tilted.step) );
normfactor = training_data->normfactor.data.fl[r];
val = ( normfactor == 0.0F ) ? 0.0F : (val / normfactor);
CV_MAT_ELEM( *ptr, float, r - start, c ) = val;
}
} __END__; cvReleaseMat( &feature_idx ); return ptr;
} /* possible split in the tree */
typedef struct CvSplit
{
CvTreeCascadeNode* parent;
CvTreeCascadeNode* single_cluster;
CvTreeCascadeNode* multiple_clusters;
int num_clusters;
float single_multiple_ratio; struct CvSplit* next;
} CvSplit; void cvCreateTreeCascadeClassifier( const char* dirname,
const char* vecfilename,
const char* bgfilename,
int npos, int nneg, int nstages,
int numprecalculated,
int numsplits,
float minhitrate, float maxfalsealarm,
float weightfraction,
int mode, int symmetric,
int equalweights,
int winwidth, int winheight,
int boosttype, int stumperror,
int maxtreesplits, int minpos, bool bg_vecfile )
{
CvTreeCascadeClassifier* tcc = NULL;
CvIntHaarFeatures* haar_features = NULL;
CvHaarTrainingData* training_data = NULL;
CvMat* vals = NULL;
CvMat* cluster_idx = NULL;
CvMat* idx = NULL;
CvMat* features_idx = NULL; CV_FUNCNAME( "cvCreateTreeCascadeClassifier" ); __BEGIN__; int i, k;
CvTreeCascadeNode* leaves;
int best_num, cur_num;
CvSize winsize;
char stage_name[PATH_MAX];
char buf[PATH_MAX];
char* suffix;
int total_splits; int poscount;
int negcount;
int consumed;
double false_alarm;
double proctime; int nleaves;
double required_leaf_fa_rate;
float neg_ratio; int max_clusters; max_clusters = CV_MAX_CLUSTERS;
neg_ratio = (float) nneg / npos; nleaves = 1 + MAX( 0, maxtreesplits );
required_leaf_fa_rate = pow( (double) maxfalsealarm, (double) nstages ) / nleaves; printf( "Required leaf false alarm rate: %g\n", required_leaf_fa_rate ); total_splits = 0; winsize = cvSize( winwidth, winheight ); CV_CALL( cluster_idx = cvCreateMat( 1, npos + nneg, CV_32SC1 ) );
CV_CALL( idx = cvCreateMat( 1, npos + nneg, CV_32SC1 ) ); CV_CALL( tcc = (CvTreeCascadeClassifier*)
icvLoadTreeCascadeClassifier( dirname, winwidth + 1, &total_splits ) );
CV_CALL( leaves = icvFindDeepestLeaves( tcc ) ); CV_CALL( icvPrintTreeCascade( tcc->root ) ); haar_features = icvCreateIntHaarFeatures( winsize, mode, symmetric ); printf( "Number of features used : %d\n", haar_features->count ); training_data = icvCreateHaarTrainingData( winsize, npos + nneg ); sprintf( stage_name, "%s/", dirname );
suffix = stage_name + strlen( stage_name ); if (! bg_vecfile)
if( !icvInitBackgroundReaders( bgfilename, winsize ) && nstages > 0 )
CV_ERROR( CV_StsError, "Unable to read negative images" ); if( nstages > 0 )
{
/* width-first search in the tree */
do
{
CvSplit* first_split;
CvSplit* last_split;
CvSplit* cur_split; CvTreeCascadeNode* parent;
CvTreeCascadeNode* cur_node;
CvTreeCascadeNode* last_node; first_split = last_split = cur_split = NULL;
parent = leaves;
leaves = NULL;
do
{
int best_clusters; /* best selected number of clusters */
float posweight, negweight;
double leaf_fa_rate; if( parent ) sprintf( buf, "%d", parent->idx );
else sprintf( buf, "NULL" );
printf( "\nParent node: %s\n\n", buf ); printf( "*** 1 cluster ***\n" ); tcc->eval = icvEvalTreeCascadeClassifierFilter;
/* find path from the root to the node <parent> */
icvSetLeafNode( tcc, parent ); /* load samples */
consumed = 0;
poscount = icvGetHaarTrainingDataFromVec( training_data, 0, npos,
(CvIntHaarClassifier*) tcc, vecfilename, &consumed ); printf( "POS: %d %d %f\n", poscount, consumed, ((double) poscount)/consumed ); if( poscount <= 0 )
CV_ERROR( CV_StsError, "Unable to obtain positive samples" ); fflush( stdout ); proctime = -TIME( 0 ); nneg = (int) (neg_ratio * poscount);
negcount = icvGetHaarTrainingDataFromBG( training_data, poscount, nneg,
(CvIntHaarClassifier*) tcc, &false_alarm, bg_vecfile ? bgfilename : NULL );
printf( "NEG: %d %g\n", negcount, false_alarm ); printf( "BACKGROUND PROCESSING TIME: %.2f\n", (proctime + TIME( 0 )) ); if( negcount <= 0 )
CV_ERROR( CV_StsError, "Unable to obtain negative samples" ); leaf_fa_rate = false_alarm;
if( leaf_fa_rate <= required_leaf_fa_rate )
{
printf( "Required leaf false alarm rate achieved. "
"Branch training terminated.\n" );
}
else if( nleaves == 1 && tcc->next_idx == nstages )
{
printf( "Required number of stages achieved. "
"Branch training terminated.\n" );
}
else
{
CvTreeCascadeNode* single_cluster;
CvTreeCascadeNode* multiple_clusters;
int single_num; icvSetNumSamples( training_data, poscount + negcount );
posweight = (equalweights) ? 1.0F / (poscount + negcount) : (0.5F/poscount);
negweight = (equalweights) ? 1.0F / (poscount + negcount) : (0.5F/negcount);
icvSetWeightsAndClasses( training_data,
poscount, posweight, 1.0F, negcount, negweight, 0.0F ); fflush( stdout ); /* precalculate feature values */
proctime = -TIME( 0 );
icvPrecalculate( training_data, haar_features, numprecalculated );
printf( "Precalculation time: %.2f\n", (proctime + TIME( 0 )) ); /* train stage classifier using all positive samples */
CV_CALL( single_cluster = icvCreateTreeCascadeNode() );
fflush( stdout ); proctime = -TIME( 0 );
single_cluster->stage =
(CvStageHaarClassifier*) icvCreateCARTStageClassifier(
training_data, NULL, haar_features,
minhitrate, maxfalsealarm, symmetric,
weightfraction, numsplits, (CvBoostType) boosttype,
(CvStumpError) stumperror, 0 );
printf( "Stage training time: %.2f\n", (proctime + TIME( 0 )) ); single_num = icvNumSplits( single_cluster->stage );
best_num = single_num;
best_clusters = 1;
multiple_clusters = NULL; printf( "Number of used features: %d\n", single_num ); if( maxtreesplits >= 0 )
{
max_clusters = MIN( max_clusters, maxtreesplits - total_splits + 1 );
} /* try clustering */
vals = NULL;
for( k = 2; k <= max_clusters; k++ )
{
int cluster;
int stop_clustering; printf( "*** %d clusters ***\n", k ); /* check whether clusters are big enough */
stop_clustering = ( k * minpos > poscount );
if( !stop_clustering )
{
int num[CV_MAX_CLUSTERS]; if( k == 2 )
{
proctime = -TIME( 0 );
CV_CALL( vals = icvGetUsedValues( training_data, 0, poscount,
haar_features, single_cluster->stage ) );
printf( "Getting values for clustering time: %.2f\n", (proctime + TIME(0)) );
printf( "Value matirx size: %d x %d\n", vals->rows, vals->cols );
fflush( stdout ); cluster_idx->cols = vals->rows;
for( i = 0; i < negcount; i++ ) idx->data.i[i] = poscount + i;
} proctime = -TIME( 0 ); CV_CALL( cvKMeans2( vals, k, cluster_idx, CV_TERM_CRITERIA() ) ); printf( "Clustering time: %.2f\n", (proctime + TIME( 0 )) ); for( cluster = 0; cluster < k; cluster++ ) num[cluster] = 0;
for( i = 0; i < cluster_idx->cols; i++ )
num[cluster_idx->data.i[i]]++;
for( cluster = 0; cluster < k; cluster++ )
{
if( num[cluster] < minpos )
{
stop_clustering = 1;
break;
}
}
} if( stop_clustering )
{
printf( "Clusters are too small. Clustering aborted.\n" );
break;
} cur_num = 0;
cur_node = last_node = NULL;
for( cluster = 0; (cluster < k) && (cur_num < best_num); cluster++ )
{
CvTreeCascadeNode* new_node; int num_splits;
int last_pos;
int total_pos; printf( "Cluster: %d\n", cluster ); last_pos = negcount;
for( i = 0; i < cluster_idx->cols; i++ )
{
if( cluster_idx->data.i[i] == cluster )
{
idx->data.i[last_pos++] = i;
}
}
idx->cols = last_pos; total_pos = idx->cols - negcount;
printf( "# pos: %d of %d. (%d%%)\n", total_pos, poscount,
100 * total_pos / poscount ); CV_CALL( new_node = icvCreateTreeCascadeNode() );
if( last_node ) last_node->next = new_node;
else cur_node = new_node;
last_node = new_node; posweight = (equalweights)
? 1.0F / (total_pos + negcount) : (0.5F / total_pos);
negweight = (equalweights)
? 1.0F / (total_pos + negcount) : (0.5F / negcount); icvSetWeightsAndClasses( training_data,
poscount, posweight, 1.0F, negcount, negweight, 0.0F ); /* CV_DEBUG_SAVE( idx ); */ fflush( stdout ); proctime = -TIME( 0 );
new_node->stage = (CvStageHaarClassifier*)
icvCreateCARTStageClassifier( training_data, idx, haar_features,
minhitrate, maxfalsealarm, symmetric,
weightfraction, numsplits, (CvBoostType) boosttype,
(CvStumpError) stumperror, best_num - cur_num );
printf( "Stage training time: %.2f\n", (proctime + TIME( 0 )) ); if( !(new_node->stage) )
{
printf( "Stage training aborted.\n" );
cur_num = best_num + 1;
}
else
{
num_splits = icvNumSplits( new_node->stage );
cur_num += num_splits; printf( "Number of used features: %d\n", num_splits );
}
} /* for each cluster */ if( cur_num < best_num )
{
icvReleaseTreeCascadeNodes( &multiple_clusters );
best_num = cur_num;
best_clusters = k;
multiple_clusters = cur_node;
}
else
{
icvReleaseTreeCascadeNodes( &cur_node );
}
} /* try different number of clusters */
cvReleaseMat( &vals ); CvSplit* curSplit;
CV_CALL( curSplit = (CvSplit*) cvAlloc( sizeof( *curSplit ) ) );
CV_ZERO_OBJ( curSplit ); if( last_split ) last_split->next = curSplit;
else first_split = curSplit;
last_split = curSplit; curSplit->single_cluster = single_cluster;
curSplit->multiple_clusters = multiple_clusters;
curSplit->num_clusters = best_clusters;
curSplit->parent = parent;
curSplit->single_multiple_ratio = (float) single_num / best_num;
} if( parent ) parent = parent->next_same_level;
} while( parent ); /* choose which nodes should be splitted */
do
{
float max_single_multiple_ratio; cur_split = NULL;
max_single_multiple_ratio = 0.0F;
last_split = first_split;
while( last_split )
{
if( last_split->single_cluster && last_split->multiple_clusters &&
last_split->single_multiple_ratio > max_single_multiple_ratio )
{
max_single_multiple_ratio = last_split->single_multiple_ratio;
cur_split = last_split;
}
last_split = last_split->next;
}
if( cur_split )
{
if( maxtreesplits < 0 ||
cur_split->num_clusters <= maxtreesplits - total_splits + 1 )
{
cur_split->single_cluster = NULL;
total_splits += cur_split->num_clusters - 1;
}
else
{
icvReleaseTreeCascadeNodes( &(cur_split->multiple_clusters) );
cur_split->multiple_clusters = NULL;
}
}
} while( cur_split ); /* attach new nodes to the tree */
leaves = last_node = NULL;
last_split = first_split;
while( last_split )
{
cur_node = (last_split->multiple_clusters)
? last_split->multiple_clusters : last_split->single_cluster;
parent = last_split->parent;
if( parent ) parent->child = cur_node; /* connect leaves via next_same_level and save them */
for( ; cur_node; cur_node = cur_node->next )
{
FILE* file; if( last_node ) last_node->next_same_level = cur_node;
else leaves = cur_node;
last_node = cur_node;
cur_node->parent = parent; cur_node->idx = tcc->next_idx;
tcc->next_idx++;
sprintf( suffix, "%d/%s", cur_node->idx, CV_STAGE_CART_FILE_NAME );
file = NULL;
if( icvMkDir( stage_name ) && (file = fopen( stage_name, "w" )) != 0 )
{
cur_node->stage->save( (CvIntHaarClassifier*) cur_node->stage, file );
fprintf( file, "\n%d\n%d\n",
((parent) ? parent->idx : -1),
((cur_node->next) ? tcc->next_idx : -1) );
}
else
{
printf( "Failed to save classifier into %s\n", stage_name );
}
if( file ) fclose( file );
} if( parent ) sprintf( buf, "%d", parent->idx );
else sprintf( buf, "NULL" );
printf( "\nParent node: %s\n", buf );
printf( "Chosen number of splits: %d\n\n", (last_split->multiple_clusters)
? (last_split->num_clusters - 1) : 0 ); cur_split = last_split;
last_split = last_split->next;
cvFree( &cur_split );
} /* for each split point */ printf( "Total number of splits: %d\n", total_splits ); if( !(tcc->root) ) tcc->root = leaves;
CV_CALL( icvPrintTreeCascade( tcc->root ) ); } while( leaves ); /* save the cascade to xml file */
{
char xml_path[1024];
int len = (int)strlen(dirname);
CvHaarClassifierCascade* cascade = 0;
strcpy( xml_path, dirname );
if( xml_path[len-1] == '\\' || xml_path[len-1] == '/' )
len--;
strcpy( xml_path + len, ".xml" );
cascade = cvLoadHaarClassifierCascade( dirname, cvSize(winwidth,winheight) );
if( cascade )
cvSave( xml_path, cascade );
cvReleaseHaarClassifierCascade( &cascade );
} } /* if( nstages > 0 ) */ /* check cascade performance */
printf( "\nCascade performance\n" ); tcc->eval = icvEvalTreeCascadeClassifier; /* load samples */
consumed = 0;
poscount = icvGetHaarTrainingDataFromVec( training_data, 0, npos,
(CvIntHaarClassifier*) tcc, vecfilename, &consumed ); printf( "POS: %d %d %f\n", poscount, consumed,
(consumed > 0) ? (((float) poscount)/consumed) : 0 ); if( poscount <= 0 )
fprintf( stderr, "Warning: unable to obtain positive samples\n" ); proctime = -TIME( 0 ); negcount = icvGetHaarTrainingDataFromBG( training_data, poscount, nneg,
(CvIntHaarClassifier*) tcc, &false_alarm, bg_vecfile ? bgfilename : NULL ); printf( "NEG: %d %g\n", negcount, false_alarm ); printf( "BACKGROUND PROCESSING TIME: %.2f\n", (proctime + TIME( 0 )) ); if( negcount <= 0 )
fprintf( stderr, "Warning: unable to obtain negative samples\n" ); __END__; if (! bg_vecfile)
icvDestroyBackgroundReaders(); if( tcc ) tcc->release( (CvIntHaarClassifier**) &tcc );
icvReleaseIntHaarFeatures( &haar_features );
icvReleaseHaarTrainingData( &training_data );
cvReleaseMat( &cluster_idx );
cvReleaseMat( &idx );
cvReleaseMat( &vals );
cvReleaseMat( &features_idx );
} void cvCreateTrainingSamples( const char* filename,
const char* imgfilename, int bgcolor, int bgthreshold,
const char* bgfilename, int count,
int invert, int maxintensitydev,
double maxxangle, double maxyangle, double maxzangle,
int showsamples,
int winwidth, int winheight )
{
CvSampleDistortionData data; assert( filename != NULL );
assert( imgfilename != NULL ); if( !icvMkDir( filename ) )
{
fprintf( stderr, "Unable to create output file: %s\n", filename );
return;
}
if( icvStartSampleDistortion( imgfilename, bgcolor, bgthreshold, &data ) )
{
FILE* output = NULL; output = fopen( filename, "wb" );
if( output != NULL )
{
int hasbg;
int i;
CvMat sample;
int inverse; hasbg = 0;
hasbg = (bgfilename != NULL && icvInitBackgroundReaders( bgfilename,
cvSize( winwidth,winheight ) ) ); sample = cvMat( winheight, winwidth, CV_8UC1, cvAlloc( sizeof( uchar ) *
winheight * winwidth ) ); icvWriteVecHeader( output, count, sample.cols, sample.rows ); if( showsamples )
{
cvNamedWindow( "Sample", CV_WINDOW_AUTOSIZE );
} inverse = invert;
for( i = 0; i < count; i++ )
{
if( hasbg )
{
icvGetBackgroundImage( cvbgdata, cvbgreader, &sample );
}
else
{
cvSet( &sample, cvScalar( bgcolor ) );
} if( invert == CV_RANDOM_INVERT )
{
inverse = (rand() > (RAND_MAX/2));
}
icvPlaceDistortedSample( &sample, inverse, maxintensitydev,
maxxangle, maxyangle, maxzangle,
0 /* nonzero means placing image without cut offs */,
0.0 /* nozero adds random shifting */,
0.0 /* nozero adds random scaling */,
&data ); if( showsamples )
{
cvShowImage( "Sample", &sample );
if( cvWaitKey( 0 ) == 27 )
{
showsamples = 0;
}
} icvWriteVecSample( output, &sample ); #ifdef CV_VERBOSE
if( i % 500 == 0 )
{
printf( "\r%3d%%", 100 * i / count );
}
#endif /* CV_VERBOSE */
}
icvDestroyBackgroundReaders();
cvFree( &(sample.data.ptr) );
fclose( output );
} /* if( output != NULL ) */ icvEndSampleDistortion( &data );
} #ifdef CV_VERBOSE
printf( "\r \r" );
#endif /* CV_VERBOSE */ } #define CV_INFO_FILENAME "info.dat" void cvCreateTestSamples( const char* infoname,
const char* imgfilename, int bgcolor, int bgthreshold,
const char* bgfilename, int count,
int invert, int maxintensitydev,
double maxxangle, double maxyangle, double maxzangle,
int showsamples,
int winwidth, int winheight )
{
CvSampleDistortionData data; assert( infoname != NULL );
assert( imgfilename != NULL );
assert( bgfilename != NULL ); if( !icvMkDir( infoname ) )
{ #if CV_VERBOSE
fprintf( stderr, "Unable to create directory hierarchy: %s\n", infoname );
#endif /* CV_VERBOSE */ return;
}
if( icvStartSampleDistortion( imgfilename, bgcolor, bgthreshold, &data ) )
{
char fullname[PATH_MAX];
char* filename;
CvMat win;
FILE* info; if( icvInitBackgroundReaders( bgfilename, cvSize( 10, 10 ) ) )
{
int i;
int x, y, width, height;
float scale;
float maxscale;
int inverse; if( showsamples )
{
cvNamedWindow( "Image", CV_WINDOW_AUTOSIZE );
} info = fopen( infoname, "w" );
strcpy( fullname, infoname );
filename = strrchr( fullname, '\\' );
if( filename == NULL )
{
filename = strrchr( fullname, '/' );
}
if( filename == NULL )
{
filename = fullname;
}
else
{
filename++;
} count = MIN( count, cvbgdata->count );
inverse = invert;
for( i = 0; i < count; i++ )
{
icvGetNextFromBackgroundData( cvbgdata, cvbgreader ); maxscale = MIN( 0.7F * cvbgreader->src.cols / winwidth,
0.7F * cvbgreader->src.rows / winheight );
if( maxscale < 1.0F ) continue; scale = (maxscale - 1.0F) * rand() / RAND_MAX + 1.0F;
width = (int) (scale * winwidth);
height = (int) (scale * winheight);
x = (int) ((0.1+0.8 * rand()/RAND_MAX) * (cvbgreader->src.cols - width));
y = (int) ((0.1+0.8 * rand()/RAND_MAX) * (cvbgreader->src.rows - height)); cvGetSubArr( &cvbgreader->src, &win, cvRect( x, y ,width, height ) );
if( invert == CV_RANDOM_INVERT )
{
inverse = (rand() > (RAND_MAX/2));
}
icvPlaceDistortedSample( &win, inverse, maxintensitydev,
maxxangle, maxyangle, maxzangle,
1, 0.0, 0.0, &data ); sprintf( filename, "%04d_%04d_%04d_%04d_%04d.jpg",
(i + 1), x, y, width, height ); if( info )
{
fprintf( info, "%s %d %d %d %d %d\n",
filename, 1, x, y, width, height );
} cvSaveImage( fullname, &cvbgreader->src );
if( showsamples )
{
cvShowImage( "Image", &cvbgreader->src );
if( cvWaitKey( 0 ) == 27 )
{
showsamples = 0;
}
}
}
if( info ) fclose( info );
icvDestroyBackgroundReaders();
}
icvEndSampleDistortion( &data );
}
} /* End of file. */

opencv源代码分析之二:cvhaartraining.cpp的更多相关文章

  1. hostapd源代码分析(二):hostapd的工作机制

    [转]hostapd源代码分析(二):hostapd的工作机制 原文链接:http://blog.csdn.net/qq_21949217/article/details/46004433 在我的上一 ...

  2. Zepto源代码分析之二~三个API

    因为时间关系:本次仅仅对这三个API($.camelCase.$.contains.$.each)方法进行分析 第一个方法变量转驼峰:$.camelCase('hello-world-welcome' ...

  3. PostgreSQL的 initdb 源代码分析之二十五

    继续分析: make_postgres(); 展开: 目的是创建postgres数据库. cmd是:/home/pgsql/project/bin/postgres" --single -F ...

  4. PostgreSQL的 initdb 源代码分析之二十四

    继续分析: make_template0(); 展开: 无需再作解释,就是创建template0数据库 /* * copy template1 to template0 */ static void ...

  5. PostgreSQL的 initdb 源代码分析之二十三

    继续分析: vacuum_db(); 展开: cmd是:/home/pgsql/project/bin/postgres" --single -F -O -c search_path=pg_ ...

  6. PostgreSQL的 initdb 源代码分析之二十二

    继续分析 load_plpgsql(); 展开: 就是让postgres 执行 create extension plpgsql cmd是: "/home/pgsql/project/bin ...

  7. PostgreSQL的 initdb 源代码分析之二十一

    继续分析: setup_schema(); 展开: 实质就是创建info_schema. cmd 是: "/home/pgsql/project/bin/postgres" --s ...

  8. PostgreSQL的 initdb 源代码分析之二十

    继续分析: setup_privileges(); 展开: 这是设置权限. 其cmd是:"/home/pgsql/project/bin/postgres" --single -F ...

  9. PostgreSQL的 initdb 源代码分析之二

    继续分析 下面这一段,当 initdb --version 或者  initdb --help 才有意义. ) { ], || strcmp(argv[], ) { usage(progname); ...

随机推荐

  1. 深拷贝js

    JSON 最简单的一个 let obj = {} let newObj = JSON.parse(JSON.stringify(obj)) 弊端:这种方法无法拷贝function函数,undefine ...

  2. Android RecyclerView遇到notifyDataSetChanged无效时的解决方案

    一.简述 不管AbsListView(ListView.GridView)或是新出的RecyclerView,在使用notifyDataSetChanged方法更新列表数据时,一定要保证数据为同个对象 ...

  3. Centos6.7 安装zabbix+apache+mysql教程(第一篇)

    Centos6.7 安装zabbix+apache+mysql教程 blog地址: http://www.cnblogs.com/caoguo ### 基本包安装 ### [root@ca0gu0 ~ ...

  4. (转)分布式文件存储FastDFS(二)FastDFS安装

    http://blog.csdn.net/xingjiarong/article/details/50559761 在前面的一篇中,我们分析了FastDFS的架构,知道了FastDFS是由客户端,跟踪 ...

  5. jmeter解决中文乱码问题

    问题: 当响应数据或响应页面没有设置编码时,jmeter会按照jmeter.properties文件中,sampleresult.default.encoding 设置的格式解析默认ISO-8859- ...

  6. word-spacing和letter-spacing区别

    word-spacing:单词与单词间的间距 letter-spacing:字母与字母间的间距

  7. js取自定义data属性

    //20170329 原本以为只能attr或者prop来获取属性,但是今天看别人的代码他自定义了一个属性,却取不到他的属性值,我自己在本地又可以取到,难道是phtml的原因,于是我到网上查找,发现了一 ...

  8. 强大而优雅,API 研发管理 EOLINKER 新版正式发布!

    EOLINKER 于2019年3月3日正式发布新版本!该版本大幅强化各个产品的功能.着重优化了全站的用户交互体验,并且EOLINKER AMS 产品正式更名为 EOLINKER API Studio ...

  9. JS练习:定时弹出广告

    代码: <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title ...

  10. Vue源码学习(二)——生命周期

    官网对生命周期给出了一个比较完成的流程图,如下所示: 从图中我们可以看到我们的Vue创建的过程要经过以下的钩子函数: beforeCreate => created => beforeMo ...