我又总结了一种动归模型……

这道题和上一道题很类似,都是给一个序列,然后相邻的元素可以合并

然后合并后的元素可以再次合并

那么就可以用这两道题类似的方法解决

简单来说就是枚举区间,然后枚举断点

加上断点左右两边的值(按照题目,可能不是加),然后在按题目加上计算合并后总的序列的值

就这一道题而言f[i][j] = max(f[i][k] + f[k+1][j] + a[i] * a[(k+1)%n] * a[(j+1)%n]); 题目中变化的可能就是

合并后总的序列的值的计算方式

万变不离其宗

#include<cstdio>
#include<cstring>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std; const int MAXN = 112;
int f[MAXN][MAXN], a[MAXN], b[MAXN]; int main()
{
int n;
scanf("%d", &n);
REP(i, 0, n) scanf("%d", &b[i]); int ans = 0;
REP(r, 0, n)
{
memset(f, 0, sizeof(f));
REP(i, 0, n) a[i] = b[(i+r) % n];
REP(d, 2, n + 1)
for(int st = 0; st + d - 1 < n; st++)
{
int i = st, j = st + d - 1;
REP(k, i, j)
f[i][j] = max(f[i][j], f[i][k] + f[k+1][j] + a[i] * a[(k+1)%n] * a[(j+1)%n]);
}
ans = max(ans, f[0][n - 1]);
} printf("%d\n", ans); return 0;
}

caioj 1075 动态规划入门(中链式2:能量项链)(中链式dp总结)的更多相关文章

  1. caioj 1076 动态规划入门(中链式3:最大的算式)

    一开始写了一个复杂度很大的方法,然后还过了(千万记得开longlong ) #include<cstdio> #include<cstring> #include<alg ...

  2. caioj 1074 动态规划入门(中链式1:最小交换合并问题)

    经典的石子合并问题!!! 设f[i][j]为从i到j的最大值 然后我们先枚举区间大小,然后枚举起点终点来更新 f[i][j] = min(f[i][k] + f[k+1][j] + sum(i, j) ...

  3. caioj 1079 动态规划入门(非常规DP3:钓鱼)(动规中的坑)

    这道题写了我好久, 交上去90分,就是死活AC不了 后来发现我写的程序有根本性的错误,90分只是数据弱 #include<cstdio> #include<algorithm> ...

  4. caioj 1080 动态规划入门(非常规DP4:乘电梯)(dp数组更新其他量)

    我一开始是这么想的 注意这道题数组下标是从大到小推,不是一般的从小到大推 f[i]表示从最高层h到第i层所花的最短时间,答案为f[1] 那么显然 f[i] = f[j] + wait(j) + (j ...

  5. caioj 1082 动态规划入门(非常规DP6:火车票)

    f[i]表示从起点到第i个车站的最小费用 f[i] = min(f[j] + dist(i, j)), j < i 动规中设置起点为0,其他为正无穷 (貌似不用开long long也可以) #i ...

  6. caioj 1078 动态规划入门(非常规DP2:不重叠线段)(状态定义问题)

    我一开始想的是前i个区间的最大值 显然对于当前的区间,有不选和选两种情况 如果不选的话,就继承f[i-1] 如果选的话,找离当前区间最近的区间取最优 f[i] = max(f[i-1, f[j] + ...

  7. caioj 1071 动态规划入门(二维一边推4:相似基因) (最长公共子序列拓展)

    复制上一题总结 caioj 1069到1071 都是最长公共字序列的拓展,我总结出了一个模型,屡试不爽    (1) 字符串下标从1开始,因为0用来表示字符为空的情况,而不是第一个字符     (2) ...

  8. caioj 1070 动态规划入门(二维一边推3:字符距离)(最长公共子序列拓展)

    复制上一题总结 caioj 1069到1071 都是最长公共字序列的拓展,我总结出了一个模型,屡试不爽    (1) 字符串下标从1开始,因为0用来表示字符为空的情况,而不是第一个字符     (2) ...

  9. caioj 1069 动态规划入门(二维一边推2:顺序对齐)(最长公共子序列拓展总结)

    caioj 1068是最长公共子序列裸体,秒过, 就不写博客了 caioj 1069到1071 都是最长公共字序列的拓展,我总结出了一个模型,屡试不爽    (1) 字符串下标从1开始,因为0用来表示 ...

随机推荐

  1. 跨域调用接口——WebClient通过get和post请求api

    AJAX不可以实现跨域请求,经过特殊处理才行.一般后台可以通过WebClient实现跨域请求~ //get 请求        string url = string.Format("htt ...

  2. NPOI简单的给某个单元格字体设置颜色

    参考文档有: https://www.cnblogs.com/gossip/p/4307486.html https://bbs.csdn.net/topics/391042064?page=1 效果 ...

  3. (转载)打开一个本地apk进行安装

    1 2 3 4 5 6 Intent intent = new Intent(); intent.setAction(Intent.ACTION_VIEW); File file = new File ...

  4. 在 Microsoft Word 文档 中粘贴代码实现语法高亮的方法

    1.下载notepad++. 2.将代码粘贴进notepad++,或者直接用notepad++打开. 3.点击顶栏 ===> 插件 ===> NppExport ===> cope ...

  5. python 时间差计算

    import time import datetime datebg=input("date begin:") dateed=input("date end:" ...

  6. swift语言点评八-枚举

    总结:swift中的枚举可以看作变量可以作为case匹配参数的类 Enumerations 枚举的作用:状态列举与匹配 枚举值与类型 If a value (known as a “raw” valu ...

  7. js上传文件获取文件流

    上传文件获取文件流 <div> 上传文件 : <input type="file" name = "file" id = "file ...

  8. webpack 操作

    依赖安装 :  全局安装webpack : sudo npm install webpack -g 本地安装webpack : npm install webpack —save-dev  需要注意的 ...

  9. CF666E Forensic Examination(后缀自动机+线段树合并)

    给你一个串S以及一个字符串数组T[1..m],q次询问,每次问S的子串S[pl..pr]在T[l..r]中的哪个串里的出现次数最多,并输出出现次数. 如有多解输出最靠前的那一个. 我们首先对m个字符串 ...

  10. Swagger 生成 PHP API 接口文档

    Swagger 生成 PHP API 接口文档 Lumen微服务生成Swagger文档 1.概况 有同学反馈写几十个接口文档需要两天的工作量, 随着多部门之间的协作越来越频繁, 维护成本越来越高, 文 ...