[codevs1048]石子归并&[codevs2102][洛谷P1880]石子归并加强版
codevs1048:
题目大意:有n堆石子排成一列,每次可合并相邻两堆,代价为两堆的重量之和,求把他们合并成一堆的最小代价。
解题思路:经典区间dp。设$f[i][j]$表示合并i~j的石子需要的最小代价。则有$f[i][j]=min(f[i][k]+f[k+1][j]+\sum\limits _{l=i}^{j}a[l])$,时间复杂度$O(n^3)$。
C++ Code:
#include<cstdio>
#include<cstring>
using namespace std;
int n,a[102],f[102][102],s[102];
int main(){
scanf("%d",&n);
memset(f,0x3f,sizeof f);
for(int i=1;i<=n;++i)scanf("%d",&a[i]),s[i]=s[i-1]+a[i],f[i][i]=0;
for(int i=n;i;--i)
for(int j=i+1;j<=n;++j)
for(int k=i;k<j;++k)
if(f[i][j]>f[i][k]+f[k+1][j]+s[j]-s[i-1])f[i][j]=f[i][k]+f[k+1][j]+s[j]-s[i-1];
printf("%d\n",f[1][n]);
return 0;
}
注意代码第9行,为什么i要倒着循环?举个栗子,如果要求f[1][10],就有f[1][10]=min(f[1][10],f[1][5]+f[6][10]+sum[1][10]),但是i才循环到1,就需要f[6][10]的结果,于是导致答案错误。而倒着循环,就可保证i+1~n的所有数据都已求完,就不会导致答案错误了。
codevs2102&&洛谷P1880:
题目大意:有n堆石子摆成环状,每次可合并相邻两堆,代价为两堆的重量之和,求把他们合并成一堆的最小代价和最大代价。
解题思路:本题除了是个环以外,和上题没什么区别。我们可以用化环为链的方法,具体的实现就是将这个环的单圈复制一遍,然后做n次上述dp即可。求最大价值就是把状态转移方程里的$min$改成$max$即可。时间复杂度$O(n^4)$,但代码运行量应该是不到这个极限的。
C++ Code:
#include<cstdio>
#include<cstring>
using namespace std;
int n,a[202],fmax[202][202],fmin[202][202],s[202],Max=0,Min=200000000;
void dp(int h){
for(int i=n;i;--i){
fmax[i+h][i+h]=fmin[i+h][i+h]=0;
for(int j=i+1;j<=n;++j){
fmax[i+h][j+h]=0;
fmin[i+h][j+h]=200000000;
for(int k=i;k<j;++k){
if(fmax[i+h][j+h]<fmax[i+h][k+h]+fmax[k+h+1][j+h]+s[j+h]-s[i+h-1])
fmax[i+h][j+h]=fmax[i+h][k+h]+fmax[k+h+1][j+h]+s[j+h]-s[i+h-1];
if(fmin[i+h][j+h]>fmin[i+h][k+h]+fmin[k+h+1][j+h]+s[j+h]-s[i+h-1])
fmin[i+h][j+h]=fmin[i+h][k+h]+fmin[k+h+1][j+h]+s[j+h]-s[i+h-1];
}
}
}
if(Max<fmax[1+h][n+h])Max=fmax[1+h][n+h];
if(Min>fmin[1+h][n+h])Min=fmin[1+h][n+h];
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;++i)scanf("%d",&a[i]),s[i]=s[i-1]+a[i];
for(int i=n+1;i<2*n;++i)
a[i]=a[i-n],s[i]=s[i-1]+a[i];
for(int i=1;i<=n;++i)
dp(i-1);
printf("%d\n%d\n",Min,Max);
return 0;
}
[codevs1048]石子归并&[codevs2102][洛谷P1880]石子归并加强版的更多相关文章
- 洛谷P1880 石子合并(区间DP)(环形DP)
To 洛谷.1880 石子合并 题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1 ...
- 经典DP 洛谷p1880 石子合并
https://www.luogu.org/problemnew/show/P1880 题目 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新 ...
- 洛谷P1880 石子合并(环形石子合并 区间DP)
题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...
- 洛谷 P1880 石子合并
题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...
- 洛谷P1880 石子合并
经典水题....... 断环为链长度乘二,求前缀和区间DP. #include <cstdio> #include <cstring> #include <algorit ...
- 洛谷P1880 [NOI1995]石子合并 纪中21日c组T4 2119. 【2016-12-30普及组模拟】环状石子归并
洛谷P1880 石子合并 纪中2119. 环状石子归并 洛谷传送门 题目描述1 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石 ...
- codevs 1048/洛谷 1880:石子归并
题目描述 Description 有n堆石子排成一列,每堆石子有一个重量w[i], 每次合并可以合并相邻的两堆石子,一次合并的代价为两堆石子的重量和w[i]+w[i+1].问安排怎样的合并顺序,能够使 ...
- 洛谷 P1880 [NOI1995] 石子合并(区间DP)
传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...
- 洛谷 P6031 - CF1278F Cards 加强版(推式子+递推)
洛谷题面传送门 u1s1 这个推式子其实挺套路的吧,可惜有一步没推出来看了题解 \[\begin{aligned} res&=\sum\limits_{i=0}^ni^k\dbinom{n}{ ...
随机推荐
- Unity 移动键Q的三种用法 For Mac,Windows类同
拖动整个场景:三指 (任何模式下)ALT+三指:旋转当前镜头 (任何模式下)双指前后滑动:缩放镜头 ps1:Q键移动的游戏场景,W移动的是游戏对象 ps2:三指 = 左键拖动
- addEventListener()与removeEventListener(),追加事件和删除追加事件
addEventListener()与removeEventListener()用于追加事件和删除追加.所有的DOM节点中都包含这两种方法,并且它们都接受3个参数:要处理的事件名.作为事件处理程序的函 ...
- JS iframe给父类传值
父类页面 <html><head> <script type="text/javascript"> function Ge ...
- C语言基础 (4) 原码反码补码与数据类型
1.回顾 使用gcc编译代码 gcc hello.c -o hello windows下编译代码 C语言编译步骤: 预处理(头文件展开,干掉注释) gcc -E hello.c -o hello.i ...
- 06 ASP.net
ASP.net 第一天 理解浏览器与服务器概念,与WinForm的区别. C# IIS(Internet Information Service) 互联网信息服务 Java(Tomcat) Php(A ...
- How Google Backs Up The Internet Along With Exabytes Of Other Data
出处:http://highscalability.com/blog/2014/2/3/how-google-backs-up-the-internet-along-with-exabytes-of- ...
- IOS - 退出程序
- (void)exitApplication { OAAppDelegate *app = [UIApplication sharedApplication].delegate; UIWindow ...
- js类的使用
brush示例 以d3的一个brush进行叙述,示例见: https://bl.ocks.org/xunhanliu/6f0b46789842e9e19e6cfe9bd0b16806 应用情形: 当页 ...
- These relative modules were not found:...{"sourceM ap":false} 报错解决
今天在使用vue2.0 + webpack 时,没有动过任何配置文件,也没更新依赖,但是报下面的错误: These relative modules were not found: * ./star1 ...
- 新手须知 QT类大全
QT类大全,在行内容中罗列出来了,希望大家多看看,如果是API就更好了,但可惜不是.这些是一些大类,请多做参考. QApplication 应用程序类 QLabel 标签类 QPushButton 按 ...