BZOJ 2314 士兵的放置(支配集)
显然是\(DP\)。
设\(dp[i][0/1/2]\)代表以i为根且\(i上有士兵放置/i被控制但i上没有士兵/i没有被控制\)的最小代价。
\(g[i][0/1/2]\)代表对应的方案数。
然后运用乘法原理和加法原理转移即可。
转移是我写过的树形\(DP\)里比较\(X\)(不可描述)的。
所以还是看代码吧。。(虽然可能也看不懂)
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define int long long
const int mod=1032992941;
const int INF=1e9;
const int N=501000;
int cnt,head[N];
struct edge{
int to,nxt;
}e[N*2];
void add_edge(int u,int v){
cnt++;
e[cnt].nxt=head[u];
e[cnt].to=v;
head[u]=cnt;
}
int read(){
int sum=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return sum*f;
}
int dp[N][3],g[N][3],book[N];
int ksm(int x,int b){
int tmp=1;
while(b){
if(b&1)tmp=tmp*x%mod;
b>>=1;
x=x*x%mod;
}
return tmp;
}
void dfs(int u,int f){
dp[u][0]=1;
g[u][0]=g[u][1]=g[u][2]=1;
bool flag=false;
bool mmp=false;
int hhh=0;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==f)continue;
flag=true;
dfs(v,u);
int tmp=min(dp[v][0],min(dp[v][1],dp[v][2]));
dp[u][0]+=tmp;
int w=0;
if(dp[v][0]==tmp)w=(w+g[v][0])%mod;
if(dp[v][1]==tmp)w=(w+g[v][1])%mod;
if(dp[v][2]==tmp)w=(w+g[v][2])%mod;
g[u][0]=g[u][0]*w%mod;
dp[u][2]=min(INF,dp[u][2]+dp[v][1]),g[u][2]=g[u][2]*g[v][1]%mod;
if(dp[v][0]<dp[v][1])mmp=true;
if(dp[v][1]==dp[v][0])hhh++;
}
if(flag==false){
dp[u][1]=INF;g[u][1]=0;
return;
}
if(mmp){
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==f)continue;
int tmp=min(dp[v][0],dp[v][1]);
dp[u][1]+=tmp;
int w=0;
if(dp[v][0]==tmp)w=(w+g[v][0])%mod;
if(dp[v][1]==tmp)w=(w+g[v][1])%mod;
g[u][1]=g[u][1]*w%mod;
}
}
else{
if(hhh==0){
g[u][1]=0;
int mn=INF,awsl=1;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==f)continue;
mn=min(mn,dp[v][0]-dp[v][1]);
awsl=awsl*g[v][1]%mod;
dp[u][1]+=dp[v][1];
}
dp[u][1]+=mn;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==f)continue;
if(dp[v][0]-dp[v][1]==mn)
g[u][1]=(g[u][1]+awsl*ksm(g[v][1],mod-2)%mod*g[v][0]%mod)%mod;
}
}
else{
int awsl=1;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==f)continue;
int tmp=min(dp[v][0],dp[v][1]);
dp[u][1]+=tmp;
int w=0;
if(dp[v][0]==tmp)w=(w+g[v][0])%mod;
if(dp[v][1]==tmp)w=(w+g[v][1])%mod;
g[u][1]=g[u][1]*w%mod;
awsl=awsl*g[v][1]%mod;
}
g[u][1]=(g[u][1]-awsl+mod)%mod;
}
}
}
int n;
signed main(){
n=read();
for(int i=1;i<n;i++){
int u=read(),v=read();
add_edge(u,v);add_edge(v,u);
}
dfs(1,0);
printf("%lld\n",min(dp[1][0],dp[1][1]));
if(dp[1][0]<dp[1][1])printf("%lld",g[1][0]);
else if(dp[1][0]>dp[1][1])printf("%lld",g[1][1]);
else printf("%lld",(g[1][0]+g[1][1])%mod);
}
BZOJ 2314 士兵的放置(支配集)的更多相关文章
- BZOJ 2314: 士兵的放置( 树形dp )
树形dp... dp(x, 0)表示结点x不放士兵, 由父亲控制: dp(x, 1)表示结点x不放士兵, 由儿子控制: dp(x, 2)表示结点x放士兵. ---------------------- ...
- 【BZOJ2314】士兵的放置 树形DP
[BZOJ2314]士兵的放置 Description 八中有N个房间和N-1双向通道,任意两个房间均可到达.现在出了一件极BT的事,就是八中开始闹鬼了.老大决定加强安保,现在如果在某个房间中放一个士 ...
- POJ 3398 Perfect Service --最小支配集
题目链接:http://poj.org/problem?id=3398 这题可以用两种上述讲的两种算法解:http://www.cnblogs.com/whatbeg/p/3776612.html 第 ...
- POJ3659 Cell Phone Network(树上最小支配集:树型DP)
题目求一棵树的最小支配数. 支配集,即把图的点分成两个集合,所有非支配集内的点都和支配集内的某一点相邻. 听说即使是二分图,最小支配集的求解也是还没多项式算法的.而树上求最小支配集树型DP就OK了. ...
- POJ 3398 Perfect Service(树型动态规划,最小支配集)
POJ 3398 Perfect Service(树型动态规划,最小支配集) Description A network is composed of N computers connected by ...
- POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心)-动态规划做法
POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心) Description Farmer John ...
- POJ-3659-最小支配集裸题/树形dp
Cell Phone Network Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7127 Accepted: 254 ...
- 求解任意图的最小支配集(Minimun Dominating Set)
给定一个无向图G =(V,E),其中V表示图中顶点集合,E表示边的集合.G的最小控制顶点集合为V的一个子集S∈V:假设集合R表示V排除集合S后剩余顶点集合,即R∩S=∅,R∪S=V:则最小控制顶点集合 ...
- POJ 3659 Cell Phone Network(树的最小支配集)(贪心)
Cell Phone Network Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6781 Accepted: 242 ...
随机推荐
- Linux 程序包管理-YUM
前端工具YUM管理程序包: rpm管理软件虽然方便,但是需要手工解决软件包的依赖关系:很多时候安装一个软件需要首先安装一个或多个(有时多达上百个)其它软件,手工解决很复杂:使用yum可以解决这个问题 ...
- Python for Tkinter
# tkinter常用组件- 按钮 - button(按钮组件) - RadioButton(单选框组件) - CheckButton(选择按钮组件) - Listbox(列表框组件) - 文本输入组 ...
- String String s = new String("asd") 涉及对象数目
问题·:.String str = new String("abc")创建了多少个对象? 这个问题在很多书籍上都有说到比如<Java程序员面试宝典>,包括很多国内大公司 ...
- js中“使用”el表达式
在说相关内容前,一定要先熟悉jsp运行原理: http://blog.csdn.net/lmsnju/article/details/4813488 http://hi.baidu.com/mingf ...
- cogs 969. [NOIP2006] 数列
969. [NOIP2006] 数列 ★☆ 输入文件:sequenc.in 输出文件:sequenc.out 简单对比时间限制:1 s 内存限制:162 MB 题目描述 给定一个正整数 ...
- POJ 2110
终于过了,SHIT,二分+DFS即可,二分区间,根据数字是否在区间内,变成迷宫题了.枚举第一个格子,二分上界,即可. #include <iostream> #include <cs ...
- sqlite学习笔记7:C语言中使用sqlite之打开数据库
数据库的基本内容前面都已经说得差点儿相同了.接下看看如何在C语言中使用sqlite. 一 接口 sqlite3_open(const char *filename, sqlite3 **ppDb) 打 ...
- 杭电1018-Big Number(大数)
Big Number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...
- c# 无法加载xxx.dll 找不到指定的模块(如何指定文件夹)
如果直接放在项目运行目录,例如bin/debug可以直接加载,但是这样比较乱. 如果在放debug里面的一个文件夹里面,有可能会报错“无法加载xxx.dll 找不到指定的模块”. 如果路径写成这样就会 ...
- display:block jquery.sort()
对所有的块元素都没有意义,块元素的dispaly属性默认值为block,没必要再显式定义——除非你之前对块元素的display属性重新定义过.===========================多罗 ...