A题:

题目大意:

给出内角全为120度的六边形的六条边的边长,求由多少边长为1的等边三角形构成。

解题思路:

将六边形补全为一个大的等边三角形,则大的等边三角形的边长为六边形的相邻三边之和,接着减去补的部分。

补的部分是三个边长为认识3个不相邻的六边形边长的长度构成的等边三角形,边长为a的等边三角形,由a*a个边

长为1的小三角形构成。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; int main()
{
int a[10];
for(int i=0;i<6;i++)
{
scanf("%d",&a[i]);
}
long long cur=a[0]+a[1]+a[2];
long long ans=cur*cur-a[0]*a[0]-a[2]*a[2]-a[4]*a[4];
cout<<ans<<endl;
return 0;
}

B. Equivalent Strings

题目大意:

依据给定的规则推断字符串相等。

解题思路:

依照题意递归写就可。

代码:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn=200000+1000;
char s1[maxn];
char s2[maxn];
int judge(int st1,int en1,int st2,int en2)
{
int sign=0;
for(int i=st1,j=st2;i<=en1;i++,j++)
{
if(s1[i]!=s2[j])
{
sign=1;
break;
}
}
if(sign==0)
return 1;
else
{
if((en1-st1+1)%2==0)
{
int mid1=st1+(en1-st1+1)/2-1;
int mid2=st2+(en2-st2+1)/2-1;
if(judge(st1,mid1,st2,mid2)&&judge(mid1+1,en1,mid2+1,en2))
return 1;
if(judge(st1,mid1,mid2+1,en2)&&judge(mid1+1,en1,st2,mid2))
return 1;
}
}
return 0;
}
int main()
{
int len1,len2;
scanf("%s%s",s1,s2);
len1=strlen(s1);
len2=strlen(s2);
if(len1!=len2)
cout<<"NO\n"<<endl;
else
{
int sign;
sign=judge(0,len1-1,0,len1-1);
if(sign)
printf("YES\n");
else
printf("NO\n");
}
return 0;
}

C. Gerald and Giant Chess

题目大意:

给定h*w的格子,n个不可走的点。从(1,1)到(h,w)点。每次仅仅能向下或者向右。求有多少种走法?

解题思路:

首先先不考虑不可走的点,有C(h+w-2,h-1)种走法,一共走h+w-2步,向下的有h-1步。

接着考虑当中的不可走的

点,对于一个不可走的点(x,y)。它走到这个的点的走法是dp[i],它少走的是dp[i]*C(h-x,w-y,h-x),于是把每一个不可走

的点当为终点。能够求出全部的走法数。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int h,w,n;
const int maxn=200000+100;
const int mod=1000000000+7;
long long c[maxn];
long long inv[maxn];
long long dp[5000];
struct node
{
int x;
int y;
}a[10000];
long long pow_mod(long long a,int b)//矩阵高速幂
{
long long ans=1;
while(b)
{
if(b&1)
ans=(ans*a)%mod;
a=(a*a)%mod;
b=b/2;
}
return ans;
}
long long com(int x,int y)//求组合数C(x,y)
{
return ((c[x]*inv[y])%mod*inv[x-y])%mod;
}
bool cmp(node u,node v)
{
if(u.x==v.x)
return u.y<v.y;
return u.x<v.x;
}
int main()
{
scanf("%d%d%d",&h,&w,&n);
for(int i=0;i<n;i++)
scanf("%d%d",&a[i].x,&a[i].y);
sort(a,a+n,cmp);
long long ans=0;
c[0]=1;
for(int i=1;i<maxn;i++)
c[i]=c[i-1]*i%mod;
inv[0]=1;
for(int i=1;i<maxn;i++)
inv[i]=pow_mod(c[i],mod-2);//费马小定理求逆。a^(p-2)=a^(-1)
ans=com(h+w-2,h-1);
for(int i=0;i<n;i++)
{
dp[i]=com(a[i].x+a[i].y-2,a[i].x-1);
for(int j=0;j<i;j++)//求过第i个点的方法数
{
if(a[j].x<=a[i].x&&a[j].y<=a[i].y)//推断能否够到达i点
{
dp[i]-=(dp[j]*com(a[i].x-a[j].x+a[i].y-a[j].y,a[i].x-a[j].x))%mod;
dp[i]=(dp[i]+mod)%mod;
}
}
ans=(ans-(dp[i]*com(h+w-a[i].x-a[i].y,h-a[i].x))%mod+mod)%mod;
}
cout<<ans<<endl;
return 0;
}

Codeforces Round 313(div1)的更多相关文章

  1. Codeforces Round #543 Div1题解(并不全)

    Codeforces Round #543 Div1题解 Codeforces A. Diana and Liana 给定一个长度为\(m\)的序列,你可以从中删去不超过\(m-n*k\)个元素,剩下 ...

  2. Codeforces Round #545 Div1 题解

    Codeforces Round #545 Div1 题解 来写题解啦QwQ 本来想上红的,结果没做出D.... A. Skyscrapers CF1137A 题意 给定一个\(n*m\)的网格,每个 ...

  3. Codeforces Round #539 Div1 题解

    Codeforces Round #539 Div1 题解 听说这场很适合上分QwQ 然而太晚了QaQ A. Sasha and a Bit of Relax 翻译 有一个长度为\(n\)的数组,问有 ...

  4. [Codeforces Round #254 div1] C.DZY Loves Colors 【线段树】

    题目链接:CF Round #254 div1 C 题目分析 这道题目是要实现区间赋值的操作,同时还要根据区间中原先的值修改区间上的属性权值. 如果直接使用普通的线段树区间赋值的方法,当一个节点表示的 ...

  5. Codeforces Round #313 (Div. 1)

    官方英文题解:http://codeforces.com/blog/entry/19237 Problem A: 题目大意: 给出内角和均为120°的六边形的六条边长(均为正整数),求最多能划分成多少 ...

  6. dp - Codeforces Round #313 (Div. 1) C. Gerald and Giant Chess

    Gerald and Giant Chess Problem's Link: http://codeforces.com/contest/559/problem/C Mean: 一个n*m的网格,让你 ...

  7. Codeforces Round #313 (Div. 1) B. Equivalent Strings

    Equivalent Strings Problem's Link: http://codeforces.com/contest/559/problem/B Mean: 给定两个等长串s1,s2,判断 ...

  8. Codeforces Round #313 (Div. 1) A. Gerald's Hexagon

    Gerald's Hexagon Problem's Link: http://codeforces.com/contest/559/problem/A Mean: 按顺时针顺序给出一个六边形的各边长 ...

  9. Codeforces Round #313 (Div. 2)B.B. Gerald is into Art

    B. Gerald is into Art Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/ ...

随机推荐

  1. Hadoop一主一从部署(2)

    Hadoop部署一主一从(2) 1.关闭防火墙和Linux守护进程 执行命令: iptables -F setenforce 0 2.对Hadoop集群进行初始化,在namenode(主机)上执行命令 ...

  2. 【Arduino】LCD 1602 转接板 的默认接线

    原来的1602屏需要7个IO口才能驱动起来LCD 1602转接板可以帮你省5个IO口. 在Arduino中,LCD 1602 转接板可以使用函数库LiquidCrystal_I2C1602: 该函数的 ...

  3. php正则表达式应用

    正则表达式 1.替换“/\d/”,“#”,$str:正则表达式\d 数字,替换为#,字符串 $str = "2hello 5li 6lei"; echo preg_replace( ...

  4. python 上手

    1.安装模块 cmd---“pip install [模块名]” 2.爬虫常用模块 requests beautifulsoup4 3.检查已安装的模块 cmd ---"pip list&q ...

  5. HDU_5810_数学,概率,方差

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5810 大意:将n个球往m个盒子中投,每个球被投入每个盒子的概率相等,求方差. 看题解说,这是二项分布( ...

  6. tomcat8版本实现虚拟主机

    vim /etc/hosts192.168.30.21   www.crushlinux.com192.168.30.21   www.cloud.com [root@localhost ~]# cd ...

  7. 【转载】Java IO基础总结

    Java中使用IO(输入输出)来读取和写入,读写设备上的数据.硬盘文件.内存.键盘......,根据数据的走向可分为输入流和输出流,这个走向是以内存为基准的,即往内存中读数据是输入流,从内存中往外写是 ...

  8. BZOJ2212——线段树合并

    学习线段树合并,以这道题为契机 多谢这篇博客 这里是通过对线段树合并时,顺手统计了对于一颗子树内,是否反转两种情况的逆序对数 这里只对代码进行详细分析,见注解好了 #include<cstdio ...

  9. wafII笔记

    wafII笔记:    组件的使用方法:        组件属性:                 属性的设置和获取通过option方法来完成 waf("#id").wafProm ...

  10. 使用canvas截图网页为图片并解决跨域空白以及模糊问题

    前几天给了个需求对浏览器网页进行截图,把网页统计数据图形表等截图保存至用户本地. 首先对于网页截图,我用的是canvas实现,获取你需要截图的模块的div,从而使用canvas对你需要的模块进行截图. ...