传送门

Solution

可以发现实际上是把n分为几个循环节,然后找循环节的\(lcm\)是这次的排数

而\(lcm\)必然是一些最高次幂的质数的成积,那么就dp求一下所有情况就好了

PS:注意并不是必须要等于n小于n都行,因为可以在后面补1而\(lcm\)不变

Code

#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define Re register
#define int long long
#define F(i,a,b) for(Re int i=(a);i<=(b);i++)
#define R(i,a,b) for(Re int i=(b);i>=(a);i--)
using namespace std; inline int read() {
int x=0,f=1;char c=getchar();
while(!isdigit(c)) {if(c=='-')f=-f;c=getchar();}
while(isdigit(c)) x=(x<<1)+(x<<3)+c-48,c=getchar();
return x*f;
} const int N=1010;
bool vis[N];
int n,tot,ans;
int pri[N],f[N]; void init() {
F(i,2,n) {
if(!vis[i]) pri[++tot]=i;
for(Re int j=1;j<=tot&&i*pri[j]<=n;j++) {
vis[i*pri[j]]=1;
if(i%pri[j]==0) break;
}
}
} signed main() {
n=read();
init();
// F(i,1,tot) printf("%d ",pri[i]);cout<<endl;
f[0]=1;
F(i,1,tot) R(j,0,n) for(Re int k=pri[i];j+k<=n;k*=pri[i]) f[j+k]+=f[j];
F(i,0,n) ans+=f[i];
printf("%lld",ans);
return 0;
}

[luogu4161 SCOI2009]游戏 (DP)的更多相关文章

  1. [BZOJ1025][SCOI2009]游戏 DP+置换群

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1025 题目中的排数就是多少次回到原来的序列.很显然对于题目所描述的任意一种对应法则,其中一 ...

  2. BZOJ 1025 [SCOI2009]游戏 (DP+分解质因子)

    题意: 若$a_1+a_2+\cdots+a_h=n$(任意h<=n),求$lcm(a_i)$的种类数 思路: 设$lcm(a_i)=x$, 由唯一分解定理,$x=p_1^{m_1}+p_2^{ ...

  3. bzoj1025: [SCOI2009]游戏(DP)

    题目大意:将长度为n的排列作为1,2,3,...,n的置换,有可能置换x次之后,序列又回到了1,2,3,...,n,求所有可能的x的个数. 看见这种一脸懵逼的题第一要务当然是简化题意...我们可以发现 ...

  4. BZOJ 1025: [SCOI2009]游戏( 背包dp )

    显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况. 判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑piai ≤ n时是满足题意的. 最简单我们令循环长度分别为piai, ...

  5. SCOI2009游戏

    1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1065  Solved: 673[Submit][Status] ...

  6. BZOJ 1025 [SCOI2009]游戏

    1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1533  Solved: 964[Submit][Status][ ...

  7. 【BZOJ1025】[SCOI2009]游戏(动态规划)

    [BZOJ1025][SCOI2009]游戏(动态规划) 题面 BZOJ 洛谷 题解 显然就是一个个的置换,那么所谓的行数就是所有循环的大小的\(lcm+1\). 问题等价于把\(n\)拆分成若干个数 ...

  8. bzoj千题计划116:bzoj1025: [SCOI2009]游戏

    http://www.lydsy.com/JudgeOnline/problem.php?id=1025 题目转化: 将n分为任意段,设每段的长度分别为x1,x2,…… 求lcm(xi)的个数 有一个 ...

  9. AC日记——[SCOI2009]游戏 bzoj 1025

    [SCOI2009]游戏 思路: 和为n的几个数最小公倍数有多少种. dp即可: 代码: #include <bits/stdc++.h> using namespace std; #de ...

随机推荐

  1. 微信推送给服务器的XML消息解析-springmvc 解析xml数据流

    微信推送给服务器的XML消息解析: 可以使用request.getInputStream(); 获取输入的消息流:但是需要自己解析流: spring mvc自带解析功能: controller中: @ ...

  2. POJ 3748:位操作

    位操作 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8964   Accepted: 3581 Description 如 ...

  3. Swoole源代码学习记录(十二)——ReactorThread模块

    Swoole版本号:1.7.5-stable Github地址:https://github.com/LinkedDestiny/swoole-src-analysis 这一章将分析Swoole的Re ...

  4. 2017全面JAVA面试经历总结

    https://wenku.baidu.com/view/05e8f71afbd6195f312b3169a45177232f60e474.html?from=search JAVA常见面试题及解答2 ...

  5. CF 86D 莫队(卡常数)

    CF 86D 莫队(卡常数) D. Powerful array time limit per test 5 seconds memory limit per test 256 megabytes i ...

  6. 最小割板子题——[USACO5.4]奶牛的电信

    今天邱神给我们讲了图论,还讲了一下网络流算法.自己找了一个洛谷板子题. 题目描述 农夫约翰的奶牛们喜欢通过电邮保持联系,于是她们建立了一个奶牛电脑网络,以便互相交流.这些机器用如下的方式发送电邮:如果 ...

  7. java-com-util-common-service:BaseService.java

    ylbtech-java-com-util-common-service:BaseService.java 1.返回顶部 1. package com.shineyoo.manager.util.co ...

  8. css定位、position与float同时使用的情况

    一.css定位 CSS 有三种基本的定位机制:普通流.浮动和绝对定位. 1.普通流:未专门指定的元素都在普通流中定位,position:static/relative;和float:none;也在普通 ...

  9. 0423-mysql插入语句大全

    /*注意: 1.字段和值要一一对应 2.值的数据类型是字段的数据类型 3.当输入的字段是表中全部字段时,字段可以省略不写: insert into login values ('zhangsan',‘ ...

  10. [Apple开发者帐户帮助]五、管理标识符(3)删除应用程序ID

    您可以在不再需要时删除App ID.但是,您无法删除上载到App Store Connect的应用程序的显式应用程序ID . 所需角色:帐户持有人或管理员. 在“ 证书”,“标识符和配置文件”中,从左 ...