缩点,就是把一张有向有环图中的环缩成一个个点,形成一个有向无环图。

首先我介绍一下为什么这题要缩点(有人肯定觉得这是放屁,这不就是缩点的模板题吗?但我们不能这么想,考试的时候不会有人告诉你打什么板上去吧)

根据题目意思,我们只需要找出一条点权最大的路径就行了,不限制点的个数。那么考虑对于一个环上的点被选择了,一整条环是不是应该都被选择,这一定很优,能选干嘛不选。很关键的是题目还允许我们重复经过某条边或者某个点,我们就不需要考虑其他了。因此整个环实际上可以看成一个点(选了其中一个点就应该选其他的点)

那么就正式开始缩环为点了。当然了,首先肯定是找环,为大家推荐两篇博客(不是我宣传,这两篇博客也只是我找的[] (http://blog.csdn.net/acmmmm/article/details/16361033))[](http://blog.csdn.net/sentimental_dog/article/details/53790582)

希望博客被我转载的博主不要介意。

看看这两篇博客,我觉得大家就有了一个基本认识了。在缩点操作中,最重要的是维护三个东西,它们在我代码里分别是stac(栈)(ps:之所以不加k是因为万能头文件的荼毒),dfn(时间戳),low(够追溯到的最早的栈中节点的次序号),详细的解释在代码注释里。

下面就是考虑对这三个东西的运用。详细参考博客(博客带图),需要注意的是,当dfn[u]==low[u]时,表明u一定是环上的一点,且环上的其他点就是u的子树。为什么呢?看代码
low[x]=dfn[x]=++tim;

low[x]=min(low[x],low[v]);

我截取了两句代码,第一句是对点x的low,dfn的初始化。在之后的操作中,low[x]始终取自己子树low[v]的较小值,那么什么情况会使得dfn[u]又“重新”和low[u]相等呢,就是在u的子树中有一条边(就是博客1中的后向边)直接指回了u。这样不就是形成了一个环了吗?

之后就是把环上所有的点的sd都变成这个u,即用u代替整个环,并把权值集中在u上

还有值得注意的,这个栈表示的究竟是什么?(这个在博客1中也有),根据我的理解表示的是当前搜索的一条链上的一个个点吧。

下面我附上代码先

#include<bits/stdc++.h>
using namespace std; const int maxn=+;
int n,m,sum,tim,top,s;
int p[maxn],head[maxn],sd[maxn],dfn[maxn],low[maxn];//DFN(u)为节点u搜索被搜索到时的次序编号(时间戳),Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号
int stac[maxn],vis[maxn];//栈只为了表示此时是否有父子关系
int h[maxn],in[maxn],dist[maxn];
struct EDGE
{
int to;int next;int from;
}edge[maxn*],ed[maxn*];
void add(int x,int y)
{
edge[++sum].next=head[x];
edge[sum].from=x;
edge[sum].to=y;
head[x]=sum;
}
void tarjan(int x)
{
low[x]=dfn[x]=++tim;
stac[++top]=x;vis[x]=;
for (int i=head[x];i;i=edge[i].next)
{
int v=edge[i].to;
if (!dfn[v]) {
tarjan(v);
low[x]=min(low[x],low[v]);
}
else if (vis[v])
{
low[x]=min(low[x],low[v]);
}
}
if (dfn[x]==low[x])
{
int y;
while (y=stac[top--])
{
sd[y]=x;
vis[y]=;
if (x==y) break;
p[x]+=p[y];
}
}
}
int topo()
{
queue <int> q;
int tot=;
for (int i=;i<=n;i++)
if (sd[i]==i&&!in[i])
{
q.push(i);
dist[i]=p[i];
}
while (!q.empty())
{
int k=q.front();q.pop();
for (int i=h[k];i;i=ed[i].next)
{
int v=ed[i].to;
dist[v]=max(dist[v],dist[k]+p[v]);
in[v]--;
if (in[v]==) q.push(v);
}
}
int ans=;
for (int i=;i<=n;i++)
ans=max(ans,dist[i]);
return ans;
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=;i<=n;i++)
scanf("%d",&p[i]);
for (int i=;i<=m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
add(u,v);
}
for (int i=;i<=n;i++)
if (!dfn[i]) tarjan(i);
for (int i=;i<=m;i++)
{
int x=sd[edge[i].from],y=sd[edge[i].to];
if (x!=y)
{
ed[++s].next=h[x];
ed[s].to=y;
ed[s].from=x;
h[x]=s;
in[y]++;
}
}
printf("%d",topo());
return ;
}

在处理了环后,我们就重新建立一张图,以每个环为节点(孤立一个点也算也算环的,其实也就是强联通分量了)。在这张图中我们要dp,显然对于任意边<u,v>,dp[v]=max(dp[v],dp[u]+p[v]),p[v]是v是这个环的总权值。

那么怎么解决无后效性问题呢?答案就是拓扑排序,至于为什么,在我的另一篇题解里我有提及。这下我有安利嫌疑了,但我还是希望大家去看一看,下面我附上链接。

这也是一篇题解,其实主要讲的就是拓扑排序解决DP的无后效性问题了

图论之tarjan缩点的更多相关文章

  1. 图论算法-Tarjan模板 【缩点;割顶;双连通分量】

    图论算法-Tarjan模板 [缩点:割顶:双连通分量] 为小伙伴们总结的Tarjan三大算法 Tarjan缩点(求强连通分量) int n; int low[100010],dfn[100010]; ...

  2. 洛谷 P2194 HXY烧情侣【Tarjan缩点】 分析+题解代码

    洛谷 P2194 HXY烧情侣[Tarjan缩点] 分析+题解代码 题目描述: 众所周知,HXY已经加入了FFF团.现在她要开始喜(sang)闻(xin)乐(bing)见(kuang)地烧情侣了.这里 ...

  3. hihoCoder 1185 连通性·三(Tarjan缩点+暴力DFS)

    #1185 : 连通性·三 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 暑假到了!!小Hi和小Ho为了体验生活,来到了住在大草原的约翰家.今天一大早,约翰因为有事要出 ...

  4. POJ 1236 Network of Schools(Tarjan缩点)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16806   Accepted: 66 ...

  5. King's Quest —— POJ1904(ZOJ2470)Tarjan缩点

    King's Quest Time Limit: 15000MS Memory Limit: 65536K Case Time Limit: 2000MS Description Once upon ...

  6. 【BZOJ-2438】杀人游戏 Tarjan + 缩点 + 概率

    2438: [中山市选2011]杀人游戏 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1638  Solved: 433[Submit][Statu ...

  7. 【BZOJ-1924】所驼门王的宝藏 Tarjan缩点(+拓扑排序) + 拓扑图DP

    1924: [Sdoi2010]所驼门王的宝藏 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 787  Solved: 318[Submit][Stat ...

  8. 【BZOJ-1797】Mincut 最小割 最大流 + Tarjan + 缩点

    1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1685  Solved: 724[Submit] ...

  9. BZOJ 1051 受欢迎的牛(Tarjan缩点)

    1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 4573  Solved: 2428 [Submit][S ...

随机推荐

  1. DNS查询报文实例

    2.2 DNS查询报文实例 以www.baidu.com为例,用Wireshark俘获分组,结合2.1的理论内容,很容易看明白的,DNS请求报文如下: 图7 DNS请求报文示例 2.3 DNS回答报文 ...

  2. 浅谈for循环

    for循环 <script> /* ** (1) 是执行代码块之前 ** (2) 运行代码块的条件 ** (3) 需要执行的代码块 ** (4) 代码块执行后执行 ** 执行顺序是(1)( ...

  3. Docker+ELK搭建

    换了个运行环境,重新搭建一套公司本地内部的ELK,之前也搭过(可访问:https://yanganlin.com/31.html),最近做什么事情都想用Docker,这次也用Docker,还算顺利,没 ...

  4. PHPMailer使用说明

    PHPMailer是一个用来发送电子邮件的函数包,远比PHP提供的mail()方便易用. 邮件格式说明 一封普通的电子邮件,通常是由发件人.收件人.抄送人.邮件标题.邮件内容.附件等内容构成.以下是一 ...

  5. Spark Streaming概念学习系列之Spark Streaming的竞争对手

    不多说,直接上干货! Spark Streaming的竞争对手 Storm 在Storm中,先要设计一个用于实时计算的图状结构,我们称之为拓扑(topology).这个拓扑将会被提交给集群,由集群中的 ...

  6. WCF之操作重载

    服务契约的方法重载,会在装载宿主时,抛出异常. 解决是在操作契约上Name设置为不同值,但是生成的代理会把Name的名称作为方法的名称,不过我们可以手动的修改代理类,使得方法名与服务声明的名称一样. ...

  7. Android中onActivityResult()获取返回值

    需求:从FirstActivity跳到SecondActivity,在SecondActivity中进行了操作并返回到FirstActivity. FirstActivity中的主要代码: priva ...

  8. Java语言特点与学习

    Java语言是一款面向对象的一款高级语言是由Sun Microsystems公司(现已被oracle公司收购).由James Gosling和同事们共同研发,并在1995年正式推出,据oracle官方 ...

  9. Pyhton学习——Day29

    #异常与错误# 什么是异常?# 异常就是程序运行时发生错误的信号,在程序出现错误时,则会产生异常,若没有程序处理,则会抛出异常# 导致程序在异常语句处崩溃终止# Traceback 追踪异常信号:** ...

  10. Tensorflow学习笔记----基础(3)

    目录: 一.TensorFlow的系统架构 二.TensorFlow的设计理念 三.TensorFlow的运行流程 四.TensorFlow的编程模型:边.节点.图.设备.变量.变量初始化.内核 五. ...