思路:

先算一下每条边经过次数的期望 转化为每个点经过次数的期望

边的期望=端点的期望/度数

统计一下度数 然后高斯消元

贪心附边权…….

//By SiriusRen
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define eps 1e-10
int n,m,d[250050];double a[505][505],b[250050],ans;
struct Point{int x,y;}e[250050];
void Gauss(){
int i,j,k;double t;
for(i=1;i<=n;i++){
for(j=i;j<=n;j++)if(fabs(a[j][i])>eps)break;
if(j>n)continue;if(j!=i)swap(a[i],a[j]);
for(j=i+1;j<=n;j++)if(fabs(a[j][i]>eps)){
t=a[j][i]/a[i][i];
for(k=i;k<=n+1;k++)a[j][k]-=t*a[i][k];
}
}
for(int i=n;i;i--){
for(int j=i+1;j<=n;j++)a[i][n+1]-=a[i][j]*a[j][n+1];
a[i][n+1]/=a[i][i];
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
scanf("%d%d",&e[i].x,&e[i].y),
d[e[i].x]++,d[e[i].y]++;
for(int i=1;i<=m;i++)
a[e[i].x][e[i].y]+=1.0/d[e[i].y],
a[e[i].y][e[i].x]+=1.0/d[e[i].x];
for(int i=1;i<=n;i++)a[n][i]=0;
for(int i=1;i<=n;i++)a[i][i]=-1;
a[1][n+1]=-1;Gauss();
for(int i=1;i<=m;i++)b[i]=a[e[i].x][n+1]/d[e[i].x]+a[e[i].y][n+1]/d[e[i].y];
sort(b+1,b+1+m);
for(int i=1;i<=m;i++)ans+=b[i]*(m-i+1);
printf("%.3lf\n",ans);
}

BZOJ 3143 高斯消元+贪心....的更多相关文章

  1. P3265 [JLOI2015]装备购买(高斯消元+贪心,线性代数)

    题意; 有n个装备,每个装备有m个属性,每件装备的价值为cost. 小哥,为了省钱,如果第j个装备的属性可以由其他准备组合而来.比如 每个装备属性表示为, b1, b2.......bm . 它可以由 ...

  2. [HNOI2013] 游走 - 概率期望,高斯消元,贪心

    假如我们知道了每条边经过的期望次数,则变成了一个显然的贪心.现在考虑如何求期望次数. 由于走到每个点后各向等概率,很显然一条边的期望次数可以与它的两个端点的期望次数,转化为求点的期望次数 考虑每个点对 ...

  3. BZOJ 1013 & 高斯消元

    题意: 告诉你一个K维球体球面上的K+1个点问球心坐标. sol: 乍一看还以为是K维的二分答案然后判断距离...真是傻逼了...你看乱七八糟的题目做多了然后就会忘记最有用的基本计算... 我们可以看 ...

  4. BZOJ 3503 高斯消元

    思路: 高斯消元就好啦 注意每个格子最多只能和4个相邻 所以是 n*m*n*m*5 的 并不会TLE //By SiriusRen #include <cstdio> #include & ...

  5. BZOJ 4004 高斯消元

    思路: 排个序 消元 完事~ 但是! 坑爹精度毁我人生 我hhhh他一脸 红红火火恍恍惚惚 //By SiriusRen #include <cmath> #include <cst ...

  6. 【BZOJ 4004】 装备购买(高斯消元+贪心)

    装备购买 题目 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j ...

  7. bzoj 2337 高斯消元+概率DP

    题目大意: 每条路径上有一个距离值,从1走到N可以得到一个所有经过路径的异或和,求这个异或和的数学期望 这道题直接去求数学期望的DP会导致很难列出多元方程组 我们可以考虑每一个二进制位从1走到N的平均 ...

  8. BZOJ 2844 高斯消元 线性基

    思路: //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm> using ...

  9. BZOJ 4269 高斯消元求线性基

    思路: 最大: 所有线性基异或一下 次大: 最大的异或一下最小的线性基 搞定~ //By SiriusRen #include <cstdio> #include <algorith ...

随机推荐

  1. [React] Understanding setState in componentDidMount to Measure Elements Without Transient UI State

    In this lesson we'll explore using setState to synchronously update in componentDidMount. This allow ...

  2. HDU 4175 Class Schedule (暴力+一点dp)

    pid=4175">HDU 4175 题意:有C座楼,每座楼有T个教室.一个人须要訪问C个教室.每座楼仅仅能訪问一个教室. 訪问教室须要消耗能量,从x点走到y点须要消耗abs(x-y) ...

  3. 实践补充 Installing Tomcat 7.0.x on OS X

    我的 Mac 下是1.6的 SDK,下载 Tomcat 8.0 执行后,訪问 http://127.0.0.1:8080 并无反应,并且关闭脚本会报错 : Unsupported major.mino ...

  4. 基于redis ae实现 Linux中的文件系统监控机制(inotify)

    (英文部分为转的.代码是个人代码) 1 What's inotify  The inotify API provides a mechanism for monitoring file system ...

  5. sc.textFile("file:///home/spark/data.txt") Input path does not exist解决方法——submit 加参数 --master local 即可解决

    use this val data = sc.textFile("/home/spark/data.txt") this should work and set master as ...

  6. JSP中动态include与静态include的区别介绍

    转自:https://m.jb51.net/article/43304.htm 动态INCLUDE 用法:<jsp:include page="included.jsp" f ...

  7. Hibernate 与mybatis的区别

    转自:https://blog.csdn.net/julinfeng/article/details/19821923 为方便以后准备面试,把一些常用的技术整理出来,会不定期更新. 首先简单介绍下两者 ...

  8. 2019Pycharm激活方法

    1.将“0.0.0.0 account.jetbrains.com”添加到hosts文件中 2.打开http://idea.lanyus.com/ 3.获取激活码,粘贴到第二个选项中 亲测可用.

  9. (转载)Android:学习AIDL,这一篇文章就够了(上)

    前言 在决定用这个标题之前甚是忐忑,主要是担心自己对AIDL的理解不够深入,到时候大家看了之后说——你这是什么玩意儿,就这么点东西就敢说够了?简直是坐井观天不知所谓——那样就很尴尬了.不过又转念一想, ...

  10. 【转载】tom的RUNSTATS测试工具

    -- 创建 runstats 包.其中包括 3 个简单 API 调用: create or replace package runstats_pkg as procedure rs_start; pr ...