BZOJ 3143 高斯消元+贪心....
思路:
先算一下每条边经过次数的期望 转化为每个点经过次数的期望
边的期望=端点的期望/度数
统计一下度数 然后高斯消元
贪心附边权…….
//By SiriusRen
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define eps 1e-10
int n,m,d[250050];double a[505][505],b[250050],ans;
struct Point{int x,y;}e[250050];
void Gauss(){
int i,j,k;double t;
for(i=1;i<=n;i++){
for(j=i;j<=n;j++)if(fabs(a[j][i])>eps)break;
if(j>n)continue;if(j!=i)swap(a[i],a[j]);
for(j=i+1;j<=n;j++)if(fabs(a[j][i]>eps)){
t=a[j][i]/a[i][i];
for(k=i;k<=n+1;k++)a[j][k]-=t*a[i][k];
}
}
for(int i=n;i;i--){
for(int j=i+1;j<=n;j++)a[i][n+1]-=a[i][j]*a[j][n+1];
a[i][n+1]/=a[i][i];
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
scanf("%d%d",&e[i].x,&e[i].y),
d[e[i].x]++,d[e[i].y]++;
for(int i=1;i<=m;i++)
a[e[i].x][e[i].y]+=1.0/d[e[i].y],
a[e[i].y][e[i].x]+=1.0/d[e[i].x];
for(int i=1;i<=n;i++)a[n][i]=0;
for(int i=1;i<=n;i++)a[i][i]=-1;
a[1][n+1]=-1;Gauss();
for(int i=1;i<=m;i++)b[i]=a[e[i].x][n+1]/d[e[i].x]+a[e[i].y][n+1]/d[e[i].y];
sort(b+1,b+1+m);
for(int i=1;i<=m;i++)ans+=b[i]*(m-i+1);
printf("%.3lf\n",ans);
}
BZOJ 3143 高斯消元+贪心....的更多相关文章
- P3265 [JLOI2015]装备购买(高斯消元+贪心,线性代数)
题意; 有n个装备,每个装备有m个属性,每件装备的价值为cost. 小哥,为了省钱,如果第j个装备的属性可以由其他准备组合而来.比如 每个装备属性表示为, b1, b2.......bm . 它可以由 ...
- [HNOI2013] 游走 - 概率期望,高斯消元,贪心
假如我们知道了每条边经过的期望次数,则变成了一个显然的贪心.现在考虑如何求期望次数. 由于走到每个点后各向等概率,很显然一条边的期望次数可以与它的两个端点的期望次数,转化为求点的期望次数 考虑每个点对 ...
- BZOJ 1013 & 高斯消元
题意: 告诉你一个K维球体球面上的K+1个点问球心坐标. sol: 乍一看还以为是K维的二分答案然后判断距离...真是傻逼了...你看乱七八糟的题目做多了然后就会忘记最有用的基本计算... 我们可以看 ...
- BZOJ 3503 高斯消元
思路: 高斯消元就好啦 注意每个格子最多只能和4个相邻 所以是 n*m*n*m*5 的 并不会TLE //By SiriusRen #include <cstdio> #include & ...
- BZOJ 4004 高斯消元
思路: 排个序 消元 完事~ 但是! 坑爹精度毁我人生 我hhhh他一脸 红红火火恍恍惚惚 //By SiriusRen #include <cmath> #include <cst ...
- 【BZOJ 4004】 装备购买(高斯消元+贪心)
装备购买 题目 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j ...
- bzoj 2337 高斯消元+概率DP
题目大意: 每条路径上有一个距离值,从1走到N可以得到一个所有经过路径的异或和,求这个异或和的数学期望 这道题直接去求数学期望的DP会导致很难列出多元方程组 我们可以考虑每一个二进制位从1走到N的平均 ...
- BZOJ 2844 高斯消元 线性基
思路: //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm> using ...
- BZOJ 4269 高斯消元求线性基
思路: 最大: 所有线性基异或一下 次大: 最大的异或一下最小的线性基 搞定~ //By SiriusRen #include <cstdio> #include <algorith ...
随机推荐
- cmd 下命令
tasklist 查看当前进程 taskkill /? 查看taskkill 的帮助信息 详情 cmd /? 查看cmd详情 color /? 查看颜色详情 比如 color 2 md d:\ji ...
- django models.py增加后MySQL数据库中并没有生成相应的表
根据教程到添加并保存quest的时候报错了 1.models.py里面的命名没有错 2.查看mysite->settiongs下的INSTALLED_APPS设置正确 3.使用python ma ...
- python设计模式 之 简单工厂模式
简单工厂模式属于类的创建型模式,适合用来对大量具有共同接口的类进行实例化,它能够推迟到执行的时候才动态决定要创建哪个类的实例.而不是在编译时就必须知道要实例化哪个类. python: #!/usr/b ...
- Oracle RAC 实施
第 1 步 — 确定项目范围 理由 我们实施 Oracle RAC 是为了使我们的应用程序可伸缩和高度可用,以及为我们的客户提供更可靠的服务. 目标/可交付产品 该项目的最终产品将是一个新的 Orac ...
- Redis-3-string类型
Redis-3-string类型 标签(空格分隔): redis set key value [ex 秒数] / [px 毫秒数] [nx] /[xx] mset key value key valu ...
- luogu 1941 飞扬的小鸟
这道题对于第13个数据点,不知为什么f数组第二位开到2000以下就不能过,求指教 飞扬的小鸟 传送门 题目大意 一个小鸟在\(n*m\)的方阵里,然后有许多管道你们玩过就不多介绍了,然后每一个位置,点 ...
- Combobox下拉框两级联动
下拉框的两级联动是我们开发中经常遇到一种情况.比如一个学生管理系统中,根据年级.科目及姓名查询学生考试成绩,年级和科目都是硬盘中的有限数据(数据库)而学生则可以有用户手动指定,这时在数据库中有年级和科 ...
- [转]Adobe CC 2018 下载链接 Creative Cloud 2018 - Creative Cloud 2018 – Adobe CC 2018 Download Links
Creative Cloud 2018 – Adobe CC 2018 Download Links – ALL Languages Adobe CC 2018Direct Downloads Win ...
- (转)PHP(其他语言类似)编码的规范性
为了提高工作效率,保证开发的有效性和合理性,并最大程度提高程序代码的可读性和可重复利用性,提高沟通效率,需要一份代码编辑规范. 一.文件标记: 1.所有php文件 ...
- springmvc整合mybatis实现商品列表查询
转载.https://blog.csdn.net/chizhuyuyu/article/details/82180404 https://www.jianshu.com/p/689bdd11bfcc. ...