Sky Code
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 1750   Accepted: 545

Description

Stancu likes space travels but he is a poor software developer and will never be able to buy his own spacecraft. That is why he is preparing to steal the spacecraft of Petru. There is only one problem – Petru has locked the spacecraft with a sophisticated cryptosystem
based on the ID numbers of the stars from the Milky Way Galaxy. For breaking the system Stancu has to check each subset of four stars such that the only common divisor of their numbers is 1. Nasty, isn’t it?

Fortunately, Stancu has succeeded to limit the number
of the interesting stars to N but, any way, the possible subsets of four stars can be too many. Help him to find their number and to decide if there is a chance to break the system.

Input

In the input file several test cases are given. For each test case on the first line the number N of interesting stars is given (1 ≤ N ≤ 10000). The second line of the test case contains the list of ID numbers of the interesting stars, separated by spaces.
Each ID is a positive integer which is no greater than 10000. The input data terminate with the end of file.

Output

For each test case the program should print one line with the number of subsets with the asked property.

Sample Input

4
2 3 4 5
4
2 4 6 8
7
2 3 4 5 7 6 8

Sample Output

1
0
34

Source

[Submit]   [Go Back]   [Status]  
[Discuss]

Home Page   Go
Back
  To top

给出一个序列求gcd为1的四元组的个数,容斥搞一下。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <vector>
#include <queue>
#define foreach(it,v) for(__typeof(v.begin()) it = v.begin(); it != v.end(); ++it)
using namespace std;
typedef long long ll;
const int maxn = 1e4 + 5;
bool check[maxn];
vector<int> v[maxn];
int g[maxn],a[maxn];//g[i] 表示i的倍数有多少个(仅仅考虑素因数分解式中素数幂不超过1的i,其余为0)
void init(int n)
{
memset(check, 0, sizeof check);
for(int i = 2; i <= n; i++) {
if(check[i])continue;
for(int j = i; j <= n; j += i)
v[j].push_back(i),check[j] = 1;
}
}
void Modify(int x,int d)
{
vector<int> &cur = v[x];
int M,sz = cur.size();
M = 1<<sz;
for(int s = 0; s < M; s++) {
int now = 1;
for(int j = 0; j < sz; j++)if((s>>j)&1){
now *= cur[j];
}
g[now] += d;
}
}
ll gao(int x)
{
ll t = g[x];
if(t < 4)return 0;
t = (t*(t-1)*(t-2)*(t-3))/24;
if(v[x].size()&1) t = -t;
return t;
}
int main(int argc, char const *argv[])
{
init(maxn-5);
int n;
while(~scanf("%d",&n)) {
memset(g,0,sizeof g);
int M = 0;
for(int i = 1; i <= n; i++) {
scanf("%d",a + i);
M = max(M,a[i]);
Modify(a[i],1);
}
ll ans = 0;
for(int i = 1; i <= M; i++) ans += gao(i);
printf("%I64d\n", ans);
}
return 0;
}

版权声明:本文博主原创文章。博客,未经同意不得转载。

POJ 3904(容斥原理)的更多相关文章

  1. POJ 3904 Sky Code (容斥原理)

    B - Sky Code Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit ...

  2. poj 3904(莫比乌斯反演)

    POJ 3904 题意: 从n个数中选择4个数使他们的GCD = 1,求总共有多少种方法 Sample Input 4 2 3 4 5 4 2 4 6 8 7 2 3 4 5 7 6 8 Sample ...

  3. [poj 3904] sky code 解题报告(组合计算+容斥原理)

    题目链接:http://poj.org/problem?id=3904 题目大意: 给出一个数列,询问从中取4个元素满足最大公约数为1的方案数 题解: 很显然,ans=总的方案数-最大公约数大于1的4 ...

  4. 【POJ 3904】 Sky Code

    [题目链接] http://poj.org/problem?id=3904 [算法] 问题可以转化为求总的四元组个数 - 公约数不为1的四元组个数 总的四元组个数为C(n,4),公约数不为1的四元组个 ...

  5. poj 2773(容斥原理)

    容斥原理入门题吧. Happy 2006 Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 9798   Accepted: 3 ...

  6. POJ 3904 JZYZOJ 1202 Sky Code 莫比乌斯反演 组合数

    http://poj.org/problem?id=3904   题意:给一些数,求在这些数中找出四个数互质的方案数.   莫比乌斯反演的式子有两种形式http://blog.csdn.net/out ...

  7. POJ 3904

    第一道莫比乌斯反演的题. 建议参看http://www.isnowfy.com/mobius-inversion/ 摘其中部分 证明的话感觉写起来会比较诡异,大家意会吧说一下这个经典题目:令R(M,N ...

  8. Happy 2006 POJ - 2773 容斥原理+二分

    题意: 找到第k个与m互质的数 题解: 容斥原理求区间(1到r)里面跟n互质的个数时间复杂度O(sqrt(n))- 二分复杂度也是O(log(n)) 容斥原理+二分这个r 代码: 1 #include ...

  9. Find a multiple POJ - 2356 容斥原理(鸠巢原理)

    1 /* 2 这道题用到了鸠巢原理又名容斥原理,我的参考链接:https://blog.csdn.net/guoyangfan_/article/details/102559097 3 4 题意: 5 ...

随机推荐

  1. 【习题 3-12 UVA - 11809】Floating-Point Numbers

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] \(A*10^B = temp[M]*2^{2^E-1}\) 两边取一下对数 得到 \(lg_A+B = lg_{temp[M]} ...

  2. Tomcat基础配置和高级配置

    **********  第一部分 Tomcat基础配置   *********** 一.Apatch Tomcat 在win下配置 大部分转载自:http://blog.csdn.net/liuhao ...

  3. xcode 各种项目设置

    1:语言环境设置:项目–>PROJECT–>info–>Locailzation 2 : 手动加入项目依赖 Build Settings–>Search path–>Li ...

  4. IOS手势事件

    一, iPhone中处理触摸事件的操作,在3.2之前是主要使用的是由UIResponder而来的如下4种方式 - (void)touchesBegan:(NSSet *)touches withEve ...

  5. BestCoder Round #11 (Div. 2) 前三题题解

    题目链接: huangjing hdu5054 Alice and Bob 思路: 就是(x,y)在两个參考系中的表示演全然一样.那么仅仅可能在这个矩形的中点.. 题目: Alice and Bob ...

  6. Spring Boot初步认识

    Spring Boot 来源及背后 Spring Boot开发始于 2013 年,伴随Spring4.0而生,2014 年 4 月发布 1.0.0 版本.当前版本1.4.0,http://projec ...

  7. php 微信支付企业付款

    1.所需参数 字段名 变量名 必填 示例值 类型 描述 公众账号appid mch_appid 是 wx8888888888888888 String 公众号的appId 商户号 mchid 是 19 ...

  8. iOS开发NSOperation 三:操作依赖和监听以及线程间通信

    一:操作依赖和监听 #import "ViewController.h" @interface ViewController () @end @implementation Vie ...

  9. ssl 内存泄露

    http://i.mtime.com/chevalier/blog/1824652/ openssl内存分配 chevalier 发布于: 2009-04-20 10:31  openssl内存分配  ...

  10. CISCO - 查找命令行

    http://www.cisco.com/c/en/us/support/web/tools/help/command_search_best_practices.html Support Best ...