这道题要求每个节点只能经过一次,也就是结点容量为1, 要拆点, 拆成两个点, 中间连一条弧容量为1, 费用为0.
因为拆成两个点, 所以要经过原图中的这个节点就要经过拆成的这两个点, 又因为这两个点的

边的容量为1, 所以只能经过一次, 就等价于原图中的点只能经过一次。

拆点的时候要注意细节:起点和终点不用拆, 因为有两条路径, 所以起点和终点必须经过两次。

因此一开始的时候只拆2到n-1这些点, 拆成i与n+i。起点是1, 终点是n, 源点是0, 汇点是2 * n + 1

然后后来加边的时候, 如果非源点和终点, 连接的时候是拆出来的点连原来的点, 如果是起点

和终点, 那么就是原来的点相连。最后再把源点和起点连一条弧, 容量为2, 表示有两条路径, 终点


与汇点也一样

最后求最小费用流就ok了。

#include<cstdio>
#include<vector>
#include<queue>
#include<algorithm>
#include<cstring>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std; typedef long long ll;
const int MAXN = 4123;
struct Edge
{
int from, to, cap, flow, cost;
Edge(int from, int to, int cap, int flow, int cost) : from(from), to(to), cap(cap), flow(flow), cost(cost) {};
};
vector<Edge> edges;
vector<int> g[MAXN];
int p[MAXN], a[MAXN], d[MAXN], vis[MAXN], n, m, s, t; void AddEdge(int from, int to, int cap, int cost)
{
edges.push_back(Edge(from, to, cap, 0, cost));
edges.push_back(Edge(to, from, 0, 0, -cost));
g[from].push_back(edges.size() - 2);
g[to].push_back(edges.size() - 1);
} bool spfa(int& flow, ll& cost)
{
REP(i, 0, t + 1) d[i] = (i == s ? 0 : 1e9);
memset(vis, 0, sizeof(vis));
vis[s] = 1; p[s] = 0; a[s] = 1e9; queue<int> q;
q.push(s);
while(!q.empty())
{
int u = q.front(); q.pop();
vis[u] = 0;
REP(i, 0, g[u].size())
{
Edge& e = edges[g[u][i]];
if(e.cap > e.flow && d[e.to] > d[u] + e.cost)
{
d[e.to] = d[u] + e.cost;
p[e.to] = g[u][i];
a[e.to] = min(a[u], e.cap - e.flow);
if(!vis[e.to]) { vis[e.to] = 1; q.push(e.to); }
}
}
} if(d[t] == 1e9) return false;
flow += a[t];
cost += (ll)d[t] * (ll)a[t];
for(int u = t; u != s; u = edges[p[u]].from)
{
edges[p[u]].flow += a[t];
edges[p[u] ^ 1].flow -= a[t];
}
return true;
} int mincost(ll& cost)
{
int flow = 0; cost = 0;
while(spfa(flow, cost));
return flow;
} int main()
{
while(~scanf("%d%d", &n, &m) && n)
{
REP(i, 0, 2 * n + 1) g[i].clear();
edges.clear();
s = 0, t = 2 * n + 1; for(int i = 2; i <= n - 1; i++) AddEdge(i, n + i, 1, 0);
while(m--)
{
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
if(u != 1 && u != n) AddEdge(u + n, v, 1, w);
else AddEdge(u, v, 1, w);
} ll ans;
AddEdge(s, 1, 2, 0);
AddEdge(n, t, 2, 0);
mincost(ans);
printf("%lld\n", ans);
} return 0;
}

紫书 例题11-9 UVa 1658 (拆点+最小费用流)的更多相关文章

  1. UVa 1658 (拆点法 最小费用流) Admiral

    题意: 给出一个有向带权图,求从起点到终点的两条不相交路径使得权值和最小. 分析: 第一次听到“拆点法”这个名词. 把除起点和终点以外的点拆成两个点i和i',然后在这两点之间连一条容量为1,费用为0的 ...

  2. 紫书 例题 11-13 UVa 10735(混合图的欧拉回路)(最大流)

    这道题写了两个多小时-- 首先讲一下怎么建模 我们的目的是让所有点的出度等于入度 那么我们可以把点分为两部分, 一部分出度大于入度, 一部分入度大于出度 那么显然, 按照书里的思路,将边方向后,就相当 ...

  3. 紫书 例题8-3 UVa 1152(中途相遇法)

    这道题要逆向思维, 就是求出答案的一部分, 然后反过去去寻找答案存不存在. 其实很多其他题都用了这道题目的方法, 自己以前都没有发现, 这道题专门考这个方法.这个方法可以没有一直往下求, 可以省去很多 ...

  4. 紫书 例题8-12 UVa 12627 (找规律 + 递归)

    紫书上有很明显的笔误, 公式写错了.g(k, i)的那个公式应该加上c(k-1)而不是c(k).如果加上c(k-1)那就是这一次 所有的红气球的数目, 肯定大于最下面i行的红气球数 我用的是f的公式, ...

  5. 紫书 例题8-4 UVa 11134(问题分解 + 贪心)

     这道题目可以把问题分解, 因为x坐标和y坐标的答案之间没有联系, 所以可以单独求两个坐标的答案 我一开始想的是按照左区间从小到大, 相同的时候从右区间从小到大排序, 然后WA 去uDebug找了数据 ...

  6. 紫书 例题8-17 UVa 1609 (构造法)(详细注释)

    这道题用构造法, 就是自己依据题目想出一种可以得到解的方法, 没有什么规律可言, 只能根据题目本身来思考. 这道题的构造法比较复杂, 不知道刘汝佳是怎么想出来的, 我想的话肯定想不到. 具体思路紫书上 ...

  7. 紫书 例题 9-5 UVa 12563 ( 01背包变形)

    总的来说就是价值为1,时间因物品而变,同时注意要刚好取到的01背包 (1)时间方面.按照题意,每首歌的时间最多为t + w - 1,这里要注意. 同时记得最后要加入时间为678的一首歌曲 (2)这里因 ...

  8. 紫书 例题 10-26 UVa 11440(欧拉函数+数论)

    这里用到了一些数论知识 首先素因子都大于M等价与M! 互质 然后又因为当k与M!互质且k>M!时当且仅当k mod M! 与M!互质(欧几里得算法的原理) 又因为N>=M, 所以N!为M! ...

  9. 紫书 例题7-14 UVa 1602(搜索+STL+打表)

    这道题想了很久不知道怎么设置状态,怎么拓展,怎么判重, 最后看了这哥们的博客 终于明白了. https://blog.csdn.net/u014800748/article/details/47400 ...

随机推荐

  1. Web API Filter

    在Web Api中,有三种Filter Filter类型 实现的接口 描述 Authorization IAuthorizationFilter 最先运行的Filter,被用作请求权限校验 Actio ...

  2. java 公开内部类无法实例化 no enclosing instance 解决办法

    因为B类不是A类的静态内部类,所以B累也只能像A类的成员一样通过new A()的实例访问,new(new A()).B(),这显然不是我们想要的方式,于是需要在B类的前边加上static,变成下边这样 ...

  3. data is not None

    在读django的form源码: def __init__(self, data=None, files=None, auto_id='id_%s', prefix=None, initial=Non ...

  4. code-reading-notes--xml 解析

  5. 2019-03-18 OpenCV Tesseract-OCR 下载 安装 配置(cv2 报错)

    OpenCV 下载 安装 配置 1.下载和Python版本对应的版本,此为下载地址 2.安装(在powershell管理员模式下安装) pip3 install .\opencv_python-3.4 ...

  6. VUE:路由

    VUE:路由 一.说明 1)官方提供的用来实现SPA的vue插件 2)github:https://github.com/vuejs/vue-router 3)中文文档:http://router.v ...

  7. Redis:基础知识及其常用数据类型和关键字

    Redis: Redis是什么: REmote DIctionary Server(远程字典服务器) 是完全开源免费的,用C语言编写的,遵守BSD协议,是一个高性能的(Key-Value)分布式内存数 ...

  8. 五大最佳开源java性能监控工具

    如果你正在寻找性能监控工具,不妨看看以下推荐的这五款开源工具,这些工具目前已经可以替代付费工具了,你可以看看是否是你的最佳选择.本文推荐的五款开源工具目前是开源社区中最受欢迎的. 1. Stagemo ...

  9. ASP.NET-datatable转换成list对象

    #region 讲DataTable转换为List对象 /// <summary> /// 利用反射将DataTable转换为List<T>对象 /// </summar ...

  10. WinServer-IIS初始安装及发布网站

    \aspnet_regiis.exe –i 还有非常重要的一步就是给发布文件夹设置权限,到底设置那一个用户的权限我也没有弄清楚,大概是IIS_IUSERS或者IUSR用户就可以了,我设置完了之后没有反 ...