Luogu 4159 [SCOI2009]迷路
BZOJ 1297
应当是简单题。
发现边权的数量很小,所以我们暴力把一个点拆成$9$个点,然后把$(x, i)$到$(x, i + 1)$连边,代表转移一次之后可以走回来;对于每一条存在的边$(i, j, k)$,把$(i, k)$向$(j, 1)$连边,代表走一条路。然后用这个矩阵乘$T$次即可,这样子最后的答案$ans = [(1, 1)][(n, 1)]$格子的值。
记$m = 9 * n$,时间复杂度为$O(m^3logT)$。
Code:
#include <cstdio>
#include <cstring>
using namespace std; const int N = ;
const int M = ;
const int P = ; int n, tim; inline void inc(int &x, int y) {
x += y;
if(x >= P) x -= P;
} inline int id(int x, int k) {
return (x - ) * + k;
} struct Matrix {
int len, wid, s[M][M]; inline void init(int r, int c) {
len = r, wid = c;
memset(s, , sizeof(s));
} friend Matrix operator * (const Matrix &x, const Matrix &y) {
Matrix res; res.init(x.len, y.wid);
for(int k = ; k <= x.wid; k++)
for(int i = ; i <= x.len; i++)
for(int j = ; j <= y.wid; j++)
inc(res.s[i][j], x.s[i][k] * y.s[k][j] % P);
return res;
} inline void print() {
for(int i = ; i <= len; i++, printf("\n"))
for(int j = ; j <= wid; j++)
printf("%d ", s[i][j]);
} } f; inline Matrix fpow(Matrix x, int y) {
Matrix res; res.init(x.len, x.wid);
for(int i = ; i <= x.len; i++) res.s[i][i] = ;
for(; y > ; y >>= ) {
if(y & ) res = res * x;
x = x * x;
}
return res;
} int main() {
scanf("%d%d", &n, &tim);
f.init( * n, * n);
for(int i = ; i <= n; i++) {
char str[N];
scanf("%s", str + );
for(int j = ; j <= n; j++) {
int k = str[j] - '';
if(!k) continue;
f.s[id(i, k)][id(j, )] = ;
} for(int j = ; j <= ; j++)
f.s[id(i, j - )][id(i, j)] = ;
} // f.print(); f = fpow(f, tim);
// f.print(); printf("%d\n", f.s[id(, )][id(n, )]);
return ;
}
Luogu 4159 [SCOI2009]迷路的更多相关文章
- Luogu P4159 [SCOI2009]迷路 矩阵快速幂+精巧转化
大致就是矩阵快速幂吧.. 这个时候会发现这些边权$\le 9$,然后瞬间想到上回一道题:是不是可以建一堆转移矩阵再建一个$lcm(1,2,3,4,5,6,7,8,9)$的矩阵?...后来发现十分的慢q ...
- LUOGU P4159 [SCOI2009]迷路(矩阵乘法)
传送门 解题思路 以前bpw讲过的一道题,顺便复习一下矩阵乘法.做法就是拆点,把每个点拆成\(9\)个点,然后挨个连边.之后若\(i\)与\(j\)之间的边长度为\(x\),就让\(i\)的第\(x\ ...
- BZOJ 1297: [SCOI2009]迷路( dp + 矩阵快速幂 )
递推式很明显...但是要做矩阵乘法就得拆点..我一开始很脑残地对于每一条权值v>1的边都新建v-1个节点去转移...然后就TLE了...把每个点拆成9个就可以了...时间复杂度O((9N)^3* ...
- 1297: [SCOI2009]迷路
1297: [SCOI2009]迷路 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 652 Solved: 442[Submit][Status] ...
- 【矩阵快速幂】bzoj1297 [SCOI2009]迷路
1297: [SCOI2009]迷路 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1407 Solved: 1007[Submit][Status ...
- [BZOJ 1297][SCOI2009]迷路
1297: [SCOI2009]迷路 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1418 Solved: 1017[Submit][Status ...
- B20J_1297_[SCOI2009]迷路_矩阵乘法
B20J_1297_[SCOI2009]迷路_矩阵乘法 题意:有向图 N 个节点,从节点 0 出发,必须恰好在 T 时刻到达节点 N-1.总共有多少种不同的路径? 2 <= N <= 10 ...
- luogu P2657 [SCOI2009]windy数 数位dp 记忆化搜索
题目链接 luogu P2657 [SCOI2009]windy数 题解 我有了一种所有数位dp都能用记忆话搜索水的错觉 代码 #include<cstdio> #include<a ...
- 【BZOJ1297】[SCOI2009]迷路(矩阵快速幂)
[BZOJ1297][SCOI2009]迷路(矩阵快速幂) 题面 BZOJ 洛谷 题解 因为边权最大为\(9\),所以记录往前记录\(9\)个单位时间前的.到达每个点的方案数就好了,那么矩阵大小就是\ ...
随机推荐
- self = [super init] 最终解释
答: init 中调用super的 init方法来初始化自己所包含有的父类信息 1.内存分配 内存应该在[Class alloc]的时候就已经分配了,大小和类型应该由对应的Clas ...
- 剑指offer-第六章面试中的各项能力(数字在排序数组中出现的次数)
题目:统计一个数字在排序数组中出现的次数. 思路:采用二分查找,找到该数字在数组中第一次出现的位置,然后再找到组后一个出现的位置.两者做减法运算再加1.时间复杂度为O(logn) Java代码: // ...
- 转:django中session的实现机制
转:www.jianshu.com 要理解session,首先要搞清楚cookie的概念.由于http是无状态的,服务器不能记住用户的信息状态,因此若由同一个客户端发起的多条请求,服务器不能辨别这些请 ...
- numpy之初探排序和集合运算
排序 排序 numpy与python列表内置的方法类似,也可通过sort方法进行排序. 用法如下: In [1]: import numpy as np In [2]: x = np.random.r ...
- Maven项目合并
当多个项目之间有关联.依赖jar包有重复时,可以考虑进行合并.举例,我一开始有一个test-pilling项目,pom文件如下: <project xmlns="http://mave ...
- eclipse配置storm1.1.0开发环境并本地跑起来
storm的开发环境搭建比hadoop(参见前文http://www.cnblogs.com/wuxun1997/p/6849878.html)简单,无需安装插件,只需新建一个java项目并配置好li ...
- 发现一个github的奇葩设定
commit时留下的邮箱,会显示在github的提交记录里,然后居然自动找服务器上的这个邮箱注册的人,显示这个用户名.
- 根据wsdl文件生成WebService客户端代码
有时候在项目中,一个项目可能有好几个公司在做.系统之间难免会出现互相调用接口的现象,这时候有一种办法就是使用webService.本篇文章将介绍如何将对接系统提供的WebService接口,根据对方提 ...
- linux下PS1命令提示符设置
linux下PS1命令提示符设置 在此文件最后一行添加:vim /etc/profileexport PS1='[\u@\h \W]\$ ' #这里必须用单引号. \d :代表日期,格式为 ...
- nginx config的多个config配置
在我们的一台服务器上,一个nginx服务器下面可能跑着许多许多的项目; 那么就需要配置多个对应的配置 端口号 已经文件入库目录等等 那么项目多了以后,把这些项目都写到一个文件里 到后期难以查看与管理 ...