CodeForces 348C Subset Sums(分块)(nsqrtn)
3 seconds
256 megabytes
standard input
standard output
You are given an array a1, a2, ..., an and m sets S1, S2, ..., Sm of indices of elements of this array. Let's denote Sk = {Sk, i} (1 ≤ i ≤ |Sk|). In other words, Sk, i is some element from set Sk.
In this problem you have to answer q queries of the two types:
- Find the sum of elements with indices from set Sk:
. The query format is "? k". - Add number x to all elements at indices from set Sk: aSk, i is replaced by aSk, i + x for all i (1 ≤ i ≤ |Sk|). The query format is "+ k x".
After each first type query print the required sum.
The first line contains integers n, m, q (1 ≤ n, m, q ≤ 105). The second line contains n integers a1, a2, ..., an (|ai| ≤ 108) — elements of array a.
Each of the following m lines describes one set of indices. The k-th line first contains a positive integer, representing the number of elements in set (|Sk|), then follow |Sk| distinct integers Sk, 1, Sk, 2, ..., Sk, |Sk| (1 ≤ Sk, i ≤ n) — elements of set Sk.
The next q lines contain queries. Each query looks like either "? k" or "+ k x" and sits on a single line. For all queries the following limits are held: 1 ≤ k ≤ m, |x| ≤ 108. The queries are given in order they need to be answered.
It is guaranteed that the sum of sizes of all sets Sk doesn't exceed 105.
After each first type query print the required sum on a single line.
Please, do not write the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
5 3 5
5 -5 5 1 -4
2 1 2
4 2 1 4 5
2 2 5
? 2
+ 3 4
? 1
+ 2 1
? 2
-3
4
9
【分析】一开始也想到了分块,但是一直以为是线段树,所以想歪了,然后看了网上的题解。。。太强了。
设B = sqrtn
先给集合分成两种, 一种是大小大于B的, 称为重集合, 小于的称为轻集合。
显然重集合的个数不会超过B个。
对每个集合, 求出它和每个重集合交集的大小, 即cnt[i][j]表示第i个集合和第j 个重集合交集的大小。 cnt数组可以O(NB)求出
对每个重集合, 维护add和sum, add表示加在这个集合上的值, sum表示这个集合没有加上其他重集合的附加值的和。
然后把操作分为4种:
1. 在轻集合上加值。 这样对每个轻集合里面的元素暴力加上v就行(O(B))。 同时要维护重集合的sum, 于是, 每个重集合的sum加上v*cnt[i][j],(O(B))。复杂度(O(B))。
2. 在重集合上加值。 直接在重集合的add上加上v。 (O(1))
3. 询问轻集合。 ans 加上轻集合里面的元素的值, (O(B))。 然后再加上重集合的add[j] * cnt[i][j], (O(B))。 O(B)
4. 询问重集合。 ans 加上重集合的sum, 然后再加上各个重集合的add[j] * cnt[i][j]。 O(B)
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <string>
#include <stack>
#include <queue>
#include <vector>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
typedef long long ll;
using namespace std;
const int N = 1e5+;
const int M = ;
int n,m,q,k;
int cnt[][N],id[N],tot=;
int is[N];
ll a[N],add[N],sum[N];
vector<int>g[N],bl[N],big;
int main() {
int u,v;
scanf("%d%d%d",&n,&m,&q);
int b=sqrt(n);
for(int i=;i<=n;i++){
scanf("%lld",&a[i]);
}
for(int i=;i<=m;i++){
scanf("%d",&k);
if(k>b)id[i]=++tot,big.pb(id[i]),is[i]=;;
for(int j=;j<k;j++){
scanf("%d",&u); g[i].pb(u);
if(k>b)bl[u].pb(tot),sum[tot]+=a[u];;
}
}
for(int i=;i<=m;i++){
for(int j=;j<g[i].size();j++){
int u=g[i][j];
for(int p=;p<bl[u].size();p++){
cnt[bl[u][p]][i]++;
}
}
}
char str[];
while(q--){
scanf("%s",str);
if(str[]=='+'){
scanf("%d%d",&u,&v);
if(is[u]){
add[id[u]]+=v;
}
else {
for(int i=;i<g[u].size();i++){
int c=g[u][i];
a[c]+=v;
}
for(int i=;i<big.size();i++){
int c=big[i];
sum[c]+=v*cnt[c][u];
}
}
}
else {
scanf("%d",&u);
if(is[u]){
ll ans=sum[id[u]];
for(int i=;i<big.size();i++){
int c=big[i];
ans+=add[c]*cnt[c][u];
}
printf("%lld\n",ans);
}
else {
ll ans=;
for(int i=;i<g[u].size();i++){
ans+=a[g[u][i]];
}
for(int i=;i<big.size();i++){
int c=big[i];
ans+=add[c]*cnt[c][u];
}
printf("%lld\n",ans);
}
}
}
return ;
}
CodeForces 348C Subset Sums(分块)(nsqrtn)的更多相关文章
- Codeforces 348C Subset Sums 分块思想
题意思路:https://www.cnblogs.com/jianrenfang/p/6502858.html 第一次见这种思路,对于集合大小分为两种类型,一种是重集合,一种是轻集合,对于重集合,我们 ...
- Codeforces 348C - Subset Sums(根号分治)
题面传送门 对于这类不好直接维护的数据结构,第一眼应该想到-- 根号分治! 我们考虑记[大集合]为大小 \(\geq\sqrt{n}\) 的集合,[小集合]为大小 \(<\sqrt{n}\) 的 ...
- [codeforces 509]C. Sums of Digits
[codeforces 509]C. Sums of Digits 试题描述 Vasya had a strictly increasing sequence of positive integers ...
- 洛谷P1466 集合 Subset Sums
P1466 集合 Subset Sums 162通过 308提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交 讨论 题解 最新讨论 暂时没有讨论 题目描述 对于从1到N (1 ...
- Project Euler 106:Special subset sums: meta-testing 特殊的子集和:元检验
Special subset sums: meta-testing Let S(A) represent the sum of elements in set A of size n. We shal ...
- Project Euler P105:Special subset sums: testing 特殊的子集和 检验
Special subset sums: testing Let S(A) represent the sum of elements in set A of size n. We shall cal ...
- Project Euler 103:Special subset sums: optimum 特殊的子集和:最优解
Special subset sums: optimum Let S(A) represent the sum of elements in set A of size n. We shall cal ...
- Codeforces348C - Subset Sums
Portal Description 给出长度为\(n(n\leq10^5)\)的序列\(\{a_n\}\)以及\(m(m\leq10^5)\)个下标集合\(\{S_m\}(\sum|S_i|\leq ...
- CodeForces 837F - Prefix Sums | Educational Codeforces Round 26
按tutorial打的我血崩,死活挂第四组- - 思路来自FXXL /* CodeForces 837F - Prefix Sums [ 二分,组合数 ] | Educational Codeforc ...
随机推荐
- [Leetcode] unique paths ii 独特路径
Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...
- Saruman’s Level Up~(多校赛算组合数)
Description Saruman’s army of orcs and other dark minions continuously mine and harvest lumber out o ...
- Linux设置虚拟内存-创建和启用Swap交换区
如果你的服务器的总是报告内存不足,并且时常因为内存不足而引发服务被强制kill的话,在不增加物理内存的情况下,启用swap交换区作为虚拟内存是一个不错的选择,如果是SSD硬盘,正常读写速度都在300M ...
- java属性为什么没多态,而是方法多态
定义 java多肽的特性:方法具有多态性,属性却没有. 准备 基类: 子类: 测试类: 结果: 分析如下 父类 a=new 子类,实际对象时子类.由于向上转型,我们可以用父类在编译期间代替子类,使得编 ...
- Round 0: Regionals 2010 :: NEERC Eastern Subregional
Round 0: Regionals 2010 :: NEERC Eastern Subregional 贴吧题解(官方)? 网上的题解 水 A Murphy's Law 题意:Anka拿着一块涂着黄 ...
- MDK stm32 仿真
直接选择simulator,仿真时报错 *** error 65: access violation at 0x40021000 : no 'read' permission 修改系统配置,原配置如下 ...
- python3,判断,循环练习1
1.使用while循环输出1 2 3 4 5 6 8 9 10 i = 1 while i <= 10: if i == 7: i += 1 print(end=' ') continue pr ...
- 单表扫描,MySQL索引选择不正确 并 详细解析OPTIMIZER_TRACE格式
一 表结构如下: 万行 CREATE TABLE t_audit_operate_log ( Fid bigint(16) AUTO_INCREMENT, Fcreate_time int(10 ...
- [ Python - 12 ] 线程的信号量、标志位及队列
线程的信号量 线程的信号量是同时允许一定数量的线程更改数据,主要作用在于限制线程的并发. #!_*_coding:utf-8_*_ # Author: hkey import threading, t ...
- 最小生成树Prim算法Kruskal算法
Prim算法采用与Dijkstra.Bellamn-Ford算法一样的“蓝白点”思想:白点代表已经进入最小生成树的点,蓝点代表未进入最小生成树的点. 算法分析 & 思想讲解: Prim算法每次 ...