CodeForces 348C Subset Sums(分块)(nsqrtn)
3 seconds
256 megabytes
standard input
standard output
You are given an array a1, a2, ..., an and m sets S1, S2, ..., Sm of indices of elements of this array. Let's denote Sk = {Sk, i} (1 ≤ i ≤ |Sk|). In other words, Sk, i is some element from set Sk.
In this problem you have to answer q queries of the two types:
- Find the sum of elements with indices from set Sk: . The query format is "? k".
- Add number x to all elements at indices from set Sk: aSk, i is replaced by aSk, i + x for all i (1 ≤ i ≤ |Sk|). The query format is "+ k x".
After each first type query print the required sum.
The first line contains integers n, m, q (1 ≤ n, m, q ≤ 105). The second line contains n integers a1, a2, ..., an (|ai| ≤ 108) — elements of array a.
Each of the following m lines describes one set of indices. The k-th line first contains a positive integer, representing the number of elements in set (|Sk|), then follow |Sk| distinct integers Sk, 1, Sk, 2, ..., Sk, |Sk| (1 ≤ Sk, i ≤ n) — elements of set Sk.
The next q lines contain queries. Each query looks like either "? k" or "+ k x" and sits on a single line. For all queries the following limits are held: 1 ≤ k ≤ m, |x| ≤ 108. The queries are given in order they need to be answered.
It is guaranteed that the sum of sizes of all sets Sk doesn't exceed 105.
After each first type query print the required sum on a single line.
Please, do not write the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
5 3 5
5 -5 5 1 -4
2 1 2
4 2 1 4 5
2 2 5
? 2
+ 3 4
? 1
+ 2 1
? 2
-3
4
9
【分析】一开始也想到了分块,但是一直以为是线段树,所以想歪了,然后看了网上的题解。。。太强了。
设B = sqrtn
先给集合分成两种, 一种是大小大于B的, 称为重集合, 小于的称为轻集合。
显然重集合的个数不会超过B个。
对每个集合, 求出它和每个重集合交集的大小, 即cnt[i][j]表示第i个集合和第j 个重集合交集的大小。 cnt数组可以O(NB)求出
对每个重集合, 维护add和sum, add表示加在这个集合上的值, sum表示这个集合没有加上其他重集合的附加值的和。
然后把操作分为4种:
1. 在轻集合上加值。 这样对每个轻集合里面的元素暴力加上v就行(O(B))。 同时要维护重集合的sum, 于是, 每个重集合的sum加上v*cnt[i][j],(O(B))。复杂度(O(B))。
2. 在重集合上加值。 直接在重集合的add上加上v。 (O(1))
3. 询问轻集合。 ans 加上轻集合里面的元素的值, (O(B))。 然后再加上重集合的add[j] * cnt[i][j], (O(B))。 O(B)
4. 询问重集合。 ans 加上重集合的sum, 然后再加上各个重集合的add[j] * cnt[i][j]。 O(B)
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <string>
#include <stack>
#include <queue>
#include <vector>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
typedef long long ll;
using namespace std;
const int N = 1e5+;
const int M = ;
int n,m,q,k;
int cnt[][N],id[N],tot=;
int is[N];
ll a[N],add[N],sum[N];
vector<int>g[N],bl[N],big;
int main() {
int u,v;
scanf("%d%d%d",&n,&m,&q);
int b=sqrt(n);
for(int i=;i<=n;i++){
scanf("%lld",&a[i]);
}
for(int i=;i<=m;i++){
scanf("%d",&k);
if(k>b)id[i]=++tot,big.pb(id[i]),is[i]=;;
for(int j=;j<k;j++){
scanf("%d",&u); g[i].pb(u);
if(k>b)bl[u].pb(tot),sum[tot]+=a[u];;
}
}
for(int i=;i<=m;i++){
for(int j=;j<g[i].size();j++){
int u=g[i][j];
for(int p=;p<bl[u].size();p++){
cnt[bl[u][p]][i]++;
}
}
}
char str[];
while(q--){
scanf("%s",str);
if(str[]=='+'){
scanf("%d%d",&u,&v);
if(is[u]){
add[id[u]]+=v;
}
else {
for(int i=;i<g[u].size();i++){
int c=g[u][i];
a[c]+=v;
}
for(int i=;i<big.size();i++){
int c=big[i];
sum[c]+=v*cnt[c][u];
}
}
}
else {
scanf("%d",&u);
if(is[u]){
ll ans=sum[id[u]];
for(int i=;i<big.size();i++){
int c=big[i];
ans+=add[c]*cnt[c][u];
}
printf("%lld\n",ans);
}
else {
ll ans=;
for(int i=;i<g[u].size();i++){
ans+=a[g[u][i]];
}
for(int i=;i<big.size();i++){
int c=big[i];
ans+=add[c]*cnt[c][u];
}
printf("%lld\n",ans);
}
}
}
return ;
}
CodeForces 348C Subset Sums(分块)(nsqrtn)的更多相关文章
- Codeforces 348C Subset Sums 分块思想
题意思路:https://www.cnblogs.com/jianrenfang/p/6502858.html 第一次见这种思路,对于集合大小分为两种类型,一种是重集合,一种是轻集合,对于重集合,我们 ...
- Codeforces 348C - Subset Sums(根号分治)
题面传送门 对于这类不好直接维护的数据结构,第一眼应该想到-- 根号分治! 我们考虑记[大集合]为大小 \(\geq\sqrt{n}\) 的集合,[小集合]为大小 \(<\sqrt{n}\) 的 ...
- [codeforces 509]C. Sums of Digits
[codeforces 509]C. Sums of Digits 试题描述 Vasya had a strictly increasing sequence of positive integers ...
- 洛谷P1466 集合 Subset Sums
P1466 集合 Subset Sums 162通过 308提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交 讨论 题解 最新讨论 暂时没有讨论 题目描述 对于从1到N (1 ...
- Project Euler 106:Special subset sums: meta-testing 特殊的子集和:元检验
Special subset sums: meta-testing Let S(A) represent the sum of elements in set A of size n. We shal ...
- Project Euler P105:Special subset sums: testing 特殊的子集和 检验
Special subset sums: testing Let S(A) represent the sum of elements in set A of size n. We shall cal ...
- Project Euler 103:Special subset sums: optimum 特殊的子集和:最优解
Special subset sums: optimum Let S(A) represent the sum of elements in set A of size n. We shall cal ...
- Codeforces348C - Subset Sums
Portal Description 给出长度为\(n(n\leq10^5)\)的序列\(\{a_n\}\)以及\(m(m\leq10^5)\)个下标集合\(\{S_m\}(\sum|S_i|\leq ...
- CodeForces 837F - Prefix Sums | Educational Codeforces Round 26
按tutorial打的我血崩,死活挂第四组- - 思路来自FXXL /* CodeForces 837F - Prefix Sums [ 二分,组合数 ] | Educational Codeforc ...
随机推荐
- ZOJ 2314 Reactor Cooling | 无源汇可行流
题目: 无源汇可行流例题 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 题解: 证明什么的就算了,下面给出一种建图方式 ...
- CF451E Devu and Flowers 解题报告
CF451E Devu and Flowers 题意: \(Devu\)有\(N\)个盒子,第\(i\)个盒子中有\(c_i\)枝花.同一个盒子内的花颜色相同,不同盒子的花颜色不同.\(Devu\)要 ...
- axios超时重发
axios的超时是在response中处理的,所以要在response中添加拦截器: axios.interceptors.response.use(undefined, function axios ...
- [学习笔记]对未来做出承诺的DP小结
这是一种DP状态设计方法. 有些题,当你必须以一个顺序往后填的话,然而后面的填法会对之前产生影响,那么,不妨在之前就对未来怎么填做出承诺. 通俗的讲,就是对未来打一个表. 然后后面填的时候,直接查表转 ...
- CentOS 6.4安装配置ldap
CentOS 6.5安装配置ldap 时间:2015-07-14 00:54来源:blog.51cto.com 作者:"ly36843运维" 博客 举报 点击:274次 一.安装l ...
- P值
https://baike.baidu.com/item/P%E5%80%BC/7083622?fr=aladdin https://baijiahao.baidu.com/s?id=15960976 ...
- CSS选择器及CSS3新增选择器
转自:http://www.cnblogs.com/libingql/p/4375354.html 1. CSS1定义的选择器 选择器 类型 说明 E 类型选择器 选择指定类型的元素 E#id ID选 ...
- HDU1596 find the safest road---(最短路径dijkstra,#变形#)
http://acm.hdu.edu.cn/showproblem.php?pid=1596 分析: 题目要找一条安全度最高的路,安全度计算方法 Safe(P) = s(e1)*s(e2)…*s ...
- 160多条Windows 7 “运行”命令
160多条Windows 7 “运行”命令: 删除或更改应用程序 = control appwiz.cpl 添加设备 = devicepairingwizard 蓝牙文件传输 = fsquirt ...
- ReadOnly与Enabled
txtDlrCode.ReadOnly = true; 1.当设置为只读,文本框有点击事件,点击该文本框还是可以响应点击事件 2.设置为只读,C#后台无法取得文本框的值,txtDlrCode.Text ...