[洛谷P1420]最长连号
题目大意:输入$n$个正整数,($1\leq n\leq 10000$),要求输出最长的连号的长度。(连号指从小到大连续自然数)
题解:考虑从小到大连续自然数差分为$1$,所以可以把原数列差分(后缀自动机不怎么会写啊),查询串为$1,11,111,\dots,111\dots(n-1个1)$,把它们插入到$AC$自动机中,然后查询即可,原数列差分不为$0,1$时赋为$0$(因为不对答案有影响)
卡点:1.原序列差分的数不为$0,1$时会挂。。。
C++ Code:($AC$自动机2018-8-13)
#include <cstdio>
#include <queue>
#define maxn 10010
using namespace std;
int n;
int s[maxn], a[maxn], b[maxn];
int nxt[maxn][2], fail[maxn], cnt[maxn], tot;
int root = 0;
queue<int> q;
void add(int *s, int n) {
int now = root, len = n;
for (int i = 1; i <= len; i++) {
if (nxt[now][s[i]]) now = nxt[now][s[i]];
else now = nxt[now][s[i]] = ++tot;
cnt[now]++;
}
}
void build() {
for (int i = 0; i < 2; i++)
if (nxt[root][i]) fail[nxt[root][i]] = root, q.push(nxt[root][i]);
while (!q.empty()) {
int x = q.front(); q.pop();
for (int i = 0; i < 2; i++) {
if (nxt[x][i]) fail[nxt[x][i]] = nxt[fail[x]][i], q.push(nxt[x][i]);
else nxt[x][i] = nxt[fail[x]][i];
}
}
}
int ask(int *s, int n) {
int now = root, ans = 0, len = n;
for (int i = 1; i <= n; i++) {
if (s[i] > 1 || s[i] < 0) s[i] = 0;
now = nxt[now][s[i]];
for (int j = now; j && ~cnt[j]; j = fail[j]) ans += cnt[j], cnt[j] = -1;
}
return ans;
}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &s[i]), b[i] = 1;
for (int i = 2; i <= n; i++) a[i - 1] = s[i] - s[i - 1];
add(b, n - 1);
build();
printf("%d\n", ask(a, n - 1) + 1);
return 0;
}
题解:当然我们也可以用后缀自动机来做,对差分串建一个后缀自动机,发现若答案长度为$len$,那么长度为$len-1$也是答案,所以可以二分答案(如果你直接求最长的$1$的字段也可以,但我就得这样不是很优美有趣)。
卡点:无
C++ Code:
#include <cstdio>
#include <cstring>
#define maxn 20010
using namespace std;
int nxt[maxn][2], fail[maxn], R[maxn], idx;
int last, now, np, p, t, root;
int n, a[maxn];
void insert(int x) {
if (x < 0 || x > 1) x = 0;
R[now = ++idx] = R[p = last] + 1; last = now;
for (; ~p && !nxt[p][x]; p = fail[p]) nxt[p][x] = now;
if (!~p) {fail[now] = root; return ;}
if (R[t = nxt[p][x]] == R[p] + 1) {fail[now] = t; return ;}
R[np = ++idx] = R[p] + 1;
for (int i = 0; i < 2; i++) nxt[np][i] = nxt[t][i];
fail[np] = fail[t]; fail[t] = fail[now] = np;
for (; nxt[p][x] == t; p = fail[p]) nxt[p][x] = np;
}
int tmp[maxn];
bool check(int mid) {
for (int i = 1; i <= mid; i++) tmp[i] = 1;
int now = root;
for (int i = 1; i <= mid; i++) {
now = nxt[now][tmp[i]];
if (!now) return false;
}
return true;
}
int main() {
scanf("%d", &n);
fail[root = 0] = -1; idx = last = 1;
scanf("%d", &a[1]);
for (int i = 2; i <= n; i++) {
scanf("%d", &a[i]);
insert(a[i] - a[i - 1]);
}
int l = 0, r = n, ans = 0;
while (l <= r) {
int mid = l + r >> 1;
if (check(mid)) {
l = mid + 1;
ans = mid;
} else r = mid - 1;
}
printf("%d\n", ans + 1);
}
[洛谷P1420]最长连号的更多相关文章
- 洛谷 P1420 最长连号【最长合法子序列/断则归一】
题目描述 输入n个正整数,(1<=n<=10000),要求输出最长的连号的长度.(连号指从小到大连续自然数) 输入输出格式 输入格式: 第一行,一个数n; 第二行,n个正整数,之间用空格隔 ...
- 洛谷P1420 最长连号 题解
题目传送门 这道题我是打暴力的...(尴尬) 所以直接是O(N2)的时间,但好像没有炸,数据很水... #include<bits/stdc++.h> using namespace st ...
- P1420 最长连号
洛谷——P1420 最长连号 题目描述 输入n个正整数,(1<=n<=10000),要求输出最长的连号的长度.(连号指从小到大连续自然数) 输入输出格式 输入格式: 第一行,一个数n; 第 ...
- 【洛谷】 P1420 最长连号
题目描述 输入n个正整数,(1<=n<=10000),要求输出最长的连号的长度.(连号指从小到大连续自然数) 输入输出格式 输入格式: 第一行,一个数n; 第二行,n个正整数,之间用空格隔 ...
- 洛谷P1470 最长前缀
P1470 最长前缀 Longest Prefix 题目描述 在生物学中,一些生物的结构是用包含其要素的大写字母序列来表示的.生物学家对于把长的序列分解成较短的序列(即元素)很感兴趣. 如果一个集合 ...
- 洛谷P1470 最长前缀 Longest Prefix
P1470 最长前缀 Longest Prefix 73通过 236提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交 讨论 题解 最新讨论 求大神指导,为何错? 题目描述 在生 ...
- 洛谷 [p1439] 最长公共子序列 (NlogN)
可以发现只有当两个序列中都没有重复元素时(1-n的排列)此种优化才是高效的,不然可能很不稳定. 求a[] 与b[]中的LCS 通过记录lis[i]表示a[i]在b[]中的位置,将LCS问题转化为最长上 ...
- 洛谷.T22136.最长不下降子序列(01归并排序 分治)
题目链接 \(Description\) 给定一个长为n的序列,每次可以反转 \([l,r]\) 区间,代价为 \(r-l+1\).要求在\(4*10^6\)代价内使其LIS长度最长,并输出需要操作的 ...
- 洛谷P2766 最长递增子序列问题
https://www.luogu.org/problemnew/show/P2766 注:题目描述有误,本题求的是最长不下降子序列 方案无限多时输出 n 网络流求方案数,长见识了 第一问: DP 同 ...
随机推荐
- filter-policy和AS-PATH-FILTER过滤BGP路由条目
Filter-policy过滤BGP路由条目 一:根据项目需求搭建好拓扑图如下: 二:配置 1:对项目图做理论分析,首先RT1和RT2属于EBGP(不同自治系统之间的直连路由),而RT2和RT3属于I ...
- 基于webSocket的聊天室
前言 不知大家在平时的需求中有没有遇到需要实时处理信息的情况,如站内信,订阅,聊天之类的.在这之前我们通常想到的方法一般都是采用轮训的方式每隔一定的时间向服务器发送请求从而获得最新的数据,但这样会浪费 ...
- laravel构造函数跳转失败
<?php namespace App\Http\Controllers\Admin; use Illuminate\Http\Request; use App\Http\Requests;us ...
- SQL语句笔记/好记性不如烂笔头/持续更新
常用的增删改查操作,针对库,表,字段,记录分类有助于记忆,当然熟能生巧,还是需要多多实操 库操作 删除库 drop database dbx; 列出所有库 show databases; 切换库 us ...
- nyoj 525 一道水题【字符串(分割)】
参考:https://blog.csdn.net/dxx_111/article/details/48154687 #include <iostream> #include <cst ...
- 反向代理服务器——nginx
一.概述 先来看百度百科的介绍: Nginx是一款轻量级的Web 服务器/反向代理服务器及电子邮件(IMAP/POP3)代理服务器,并在一个BSD-like 协议下发行.其特点是占有内存少,并发能力强 ...
- 开启TCP BBR拥塞控制算法
原文来自:https://github.com/iMeiji/shadowsocks_install/wiki/%E5%BC%80%E5%90%AFTCP-BBR%E6%8B%A5%E5%A1%9E% ...
- C#调用C++编写的dll
界面还是C#写的方便点,主要是有一个可视化的编辑器,不想画太多的时间在界面上.但是自己又对C++了解的多一些,所以在需要一个良好的界面的情况下,使用C++来写代码逻辑,将其编译成一个dll,然后用C# ...
- Kotlin操作符重载:把标准操作加入到任何类中(KAD 17)
作者:Antonio Leiva 时间:Mar 21, 2017 原文链接:https://antonioleiva.com/operator-overload-kotlin/ 就像其他每种语言一样, ...
- Linux-ls,cd,type命令
windows: dll:dynamic link library,动态链接库 Linux: .so:shared object,共享对象 操作系统: kernel:内核: 1.进程管理 2.内核管理 ...