感觉很是妙啊……这题数次误入歧途...最开始想的二维dp,单调队列优化;无果,卒。于是没忍住看了下标签:暴力枚举?搜索?于是开始想记忆化搜索。以为会有什么很强的剪枝之类的;30分,卒。最后终于回到正道上:50 0000的数据,只可能有O(n) & O(nlogn)两种复杂度吧?在这样的思想+标签线段树的指引下,总算是走向了光明。

暴力,正解的开端。首先考虑最开始的二维dp,转移方程为:dp[i] = min(dp[k] + 1) (k ∈ 1 ~ i - 1) , 且 i ~ k + 1为合法区间。大部分的时间消耗都在于枚举找最值+判断是否合法上。对于这部分的优化,我们先考虑一段合法的区间:要么相差 <= m, 要么都是一个人的粉丝。第二种情况明显特判就行,可以做到O(n), 暂时撇去不谈。再看第一种情况并列出式子:1. abs (a[i] - a[j - 1] - b[i] + b[j - 1]) <= m; 2. a[i] - b[i] - m <= a[j - 1] - b[j - 1] <= a[i] - b[i] + m. 到这里发现,可以用线段树维护区间的最值,将线段树建成 a[i] - b[i]的权值线段树,每次查询在满足条件的范围内的dp最小值就好了。注意要防止爆负数,加上一个大一点的数。

#include <bits/stdc++.h>
using namespace std;
#define INF 1061109567
#define maxn 600000
#define ADD 10000
int n, m, a[maxn], c[maxn], cont = INF, b[maxn], dp[maxn], ans = INF;
int N = ; struct tree
{
int l, r, num;
}T[maxn * ]; int read()
{
int x = ;
char c;
c = getchar();
while(c < '' || c > '') c = getchar();
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x;
} void Build(int p, int l, int r)
{
T[p].l = l, T[p].r = r, T[p].num = INF;
if(l == r) return;
int mid = (l + r) >> ;
Build(p << , l, mid), Build(p << | , mid + , r);
} void Getmin(int &x, int y)
{
if(x > y) x = y;
} void update(int p, int x, int num)
{
if(T[p].l == T[p].r)
{
Getmin(T[p].num, num);
return;
}
int mid = (T[p].l + T[p].r) >> ;
if(x <= mid) update(p << , x, num);
else update(p << | , x, num);
T[p].num = min(T[p << ].num, T[p << | ].num);
} int query(int p, int l, int r)
{
int L = T[p].l, R = T[p].r;
if(R < l || L > r) return INF;
if(l <= L && r >= R) return T[p].num;
return min(query(p << , l, r), query(p << | , l, r));
} int main()
{
n = read(), m = read();
memset(dp, 0x3f3f3f, sizeof(dp));
Build(, , N);
for(int i = ; i <= n; i ++)
{
c[i] = read();
a[i] = a[i - ] + (c[i] == );
b[i] = b[i - ] + (c[i] == );
}
dp[] = ;
update(, ADD, dp[]);
for(int i = ; i <= n; i ++)
{
bool flag = false;
if(c[i] == c[i - ]) dp[i] = cont + ;
else flag = true;
Getmin(dp[i], dp[i - ] + );
int tem = query(, a[i] - b[i] - m + ADD, a[i] - b[i] + m + ADD);
Getmin(dp[i], tem + );
if(flag) cont = min(dp[i - ], dp[i]);
else Getmin(cont, dp[i]);
update(, a[i] - b[i] + ADD, dp[i]);
}
printf("%d\n", dp[n]);
return ;
}

【题解】洛谷P2418 yyy loves OI IV的更多相关文章

  1. P2418 yyy loves OI IV

    题目背景 某校2015届有两位OI神牛,yyy和c01. 题目描述 全校除他们以外的N名学生,每人都会膜拜他们中的某一个人.现在老师要给他们分宿舍了.但是,问题来了: 同一间宿舍里的人要么膜拜同一位大 ...

  2. 洛谷 P1580 yyy loves Easter_Egg I

    洛谷 P1580 yyy loves Easter_Egg I 题解: 队列+字符串 #include <cstdio> #include <string> #include ...

  3. [洛谷1580]yyy loves Easter_Egg I

    题目背景 Soha的出题效率着实让人大吃一惊.OI,数学,化学的题目都出好了,物理的题还没有一道.于是,Huntfire,absi2011,lanlan对soha进行轮番炸,准备炸到soha出来,不料 ...

  4. [洛谷2397]yyy loves Maths VI

    题目背景 自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居然也不会,所以只好找你 题目描述 他让redbag找众数他还特意 ...

  5. 洛谷P2397 yyy loves Maths VI (mode)

    P2397 yyy loves Maths VI (mode) 题目背景 自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居 ...

  6. [CF327E]Axis Walking([洛谷P2396]yyy loves Maths VII)

    题目大意:给一个长度为$n(1\leqslant n\leqslant24)$的序列$S$和$k(0\leqslant k\leqslant2)$个数. 求有多少种$S$的排列方式使得其任何一个前缀和 ...

  7. 洛谷P2396 yyy loves Maths VII

    P2396 yyy loves Maths VII 题目背景 yyy对某些数字有着情有独钟的喜爱,他叫他们为幸运数字;然而他作死太多,所以把自己讨厌的数字成为"厄运数字" 题目描述 ...

  8. 洛谷——P2393 yyy loves Maths II

    P2393 yyy loves Maths II 题目背景 上次蒟蒻redbag可把yyy气坏了,yyy说他只是小学生,蒟蒻redbag这次不坑他了. 题目描述 redbag给了yyy很多个数,要yy ...

  9. 洛谷 P2393 yyy loves Maths II

    P2393 yyy loves Maths II 题目背景 上次蒟蒻redbag可把yyy气坏了,yyy说他只是小学生,蒟蒻redbag这次不坑他了. 题目描述 redbag给了yyy很多个数,要yy ...

随机推荐

  1. QQ群排名霸屏技术居然是这样简单

    最近做了一些收费的QQ群,收多少钱,一块钱的入门费,也就是说进入我的QQ群必须要1块钱的会费. 我的QQ群主要是干嘛呢,放些电影,比如说市面上电影院,正在播放的,最新最热门的,火爆的一些电影. 先前呢 ...

  2. Lavavel5.5源代码 - Pipeline

    <?php class Pipeline { protected $passable; protected $pipes = []; protected $method = 'handle'; ...

  3. jenkins+maven+docker集成java发布(一)自动发布

    JAVA项目持续集成发布 标签(空格分隔): java jenkins 微服务中持续集成自动发布是很重要的一个环节,将不同的模块应用自动部署到一台或者N台服务器中如果采用人工部署的方式不太现实 git ...

  4. 在WPF中自定义控件(3) CustomControl (下)

    原文:在WPF中自定义控件(3) CustomControl (下)   在WPF中自定义控件(3) CustomControl (下)                                 ...

  5. mysql连接jdbc查询代码

    package com.answer.test; import java.sql.DriverManager; import java.sql.ResultSet; import java.sql.S ...

  6. Linux上Makefile管理java项目

    前面文章讲到了Linux上通过.spec文件与rpmbuild命令将java程序打包为RPM安装包, 现阶段遇到新的需求: 使用Makefile来操纵java的编译.打包 该需求以前面的内容为基础 可 ...

  7. [转][赞]Android开发者必知的开发资源

    英文原文:Bongzimo  翻译: ImportNew-黄小非 随着Android平台市场份额的持续猛增 ,越来越多的开发者开始投入Android应用程序的开发大潮.如果您是一位2013年刚刚入行的 ...

  8. 「日常训练」「小专题·图论」Domino Effect(1-5)

    题意 分析 这题几乎就是一条dijkstra的问题.但是,如何考虑倒在中间? 要意识到这题求什么:单源最短路的最大值.那么有没有更大的?倒在中间有可能会使它更大. 但是要注意一个问题:不要把不存在的边 ...

  9. 使用JDK自带的keytool工具生成证书

    一.keytool 简介 keytool 是java用于管理密钥和证书的工具,它使用户能够管理自己的公钥/私钥对及相关证书,用于(通过数字签名)自我认证(用户向别的用户/服务认证自己)或数据完整性以及 ...

  10. Mysql性能优化一:SQL语句性能优化

    这里总结了52条对sql的查询优化,下面详细来看看,希望能帮助到你 1, 对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2,应尽量避免在 w ...